破碎煤岩体瓦斯-水相对渗透特性试验研究
Experimental study on gas-water relative permeability characteristics of broken coal and rock mass
-
摘要: 为探究瓦斯抽采钻孔孔周破碎煤岩体中瓦斯-水相对渗透特性,利用自主研发的破碎岩体气液耦合渗透试验系统,采用稳态渗透法开展了瓦斯-水耦合渗透试验,得到了煤样渗透参数随渗透压和轴向压力的变化特征,并分析了渗透参数间的相互影响关系。结果表明:承压破碎煤岩体孔隙度随轴向压力的增加呈快速下降、缓慢下降和趋于稳定的阶段性特征;随着含水饱和度的增加,煤样气体相对渗透率快速下降,水相对渗透率线性上升,气体和水相对渗透率表现出竞争关系,且气体渗透率对于含水饱和度的敏感程度更高;气体和水的总渗透率随有效应力的增加而减小,服从指数函数关系,有效应力会影响破碎煤岩体孔隙结构的变形过程,随孔隙度的减小,气体有效渗透率降低,相对渗透率增加;渗透压对于水和气体相对渗透率的影响可分为气体占优阶段、等渗阶段和水占优阶段,临界渗透压取值范围为0.4~0.6 MPa。Abstract: In order to explore the relative permeability characteristics of gas-water in the crushed coal rock mass around the drilling hole of gas extraction, the gas-water coupling permeation test system of the crushed rock mass was used to carry out the gas-water coupling permeation test by using the steady-state osmosis method, and the variation characteristics of the coal sample permeability parameters with osmotic pressure and axial pressure were obtained, and the interaction relationship between the permeation parameters was analyzed. The results show that the porosity of the crushed coal mass under pressure shows a rapid decline, a slow decline and stabilization with the increase of axial pressure. With the increase of water saturation, the relative permeability of coal-like gases decreases rapidly, the relative permeability of water increases linearly, the relative permeability of gases and water shows a competitive relationship, and the sensitivity of gas permeability to water saturation is higher. The total permeability of gas and water decreases with the increase of the effective force, obeying the exponential function relationship, the effective force will affect the deformation process of the pore structure of the crushed coal rock mass, and with the decrease of porosity, the effective permeability of the gas decreases and the relative permeability increases. The influence of osmotic pressure on the relative permeability of water and gas can be divided into gas dominant stage, isotonic stage and water dominant stage, and the critical osmotic pressure extraction value ranges from 0.4 MPa to 0.6 MPa.
-
Keywords:
- gas extraction /
- broken coal sample /
- relative permeability /
- porosity /
- water saturation /
- effective stress
-
-
[1] 袁亮.煤及共伴生资源精准开采科学问题与对策[J].煤炭学报, 2019, 44(1): 1-9. YUAN Liang. Scientific problem and countermeasure for precision mining of coal and associated resources[J]. Journal of China Coal Society, 2019, 44(1): 1-9.
[2] 李树刚, 杨二豪, 林海飞, 等.深部开采卸压瓦斯精准抽采体系构建及实践[J].煤炭科学技术, 2021, 49(5): 1-10. LI Shugang, YANG Erhao, LIN Haifei, et al. Construction and practice of accurate gas drainage system for pressure relief gas in deep mining[J]. Coal Science and Technology, 2021, 49(5): 1-10
[3] 蒋一峰.受载煤体-瓦斯-水耦合渗流特性研究[D].北京: 中国矿业大学(北京), 2018. [4] 于波, 毕慧杰, 邓志刚, 等.气-水两相流耦合模型及瓦斯抽采模拟研究[J].矿业安全与环保, 2020, 47(4): 12-16. YU Bo, BI Huijie, DENG Zhigang, et al. Study on gas-water two-phase flow coupling model and gas drainage simulation[J]. Mining Safety and Environmental Protection, 2020, 47(4): 12-16.
[5] GAO J J, LAU H C, SUN J, et al. Unsaturated poroelastic responses of an inclined borehole in a porous medium saturated with two immiscible fluids incorporating the concept of the equivalent pore pressure[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108846. [6] 刘震, 李增华, 杨永良, 等.水分对煤体瓦斯吸附及径向渗流影响试验研究[J].岩石力学与工程学报, 2014, 33(3): 586-593. LIU Zhen, LI Zenghua, YANG Yongliang, et al. Experimental study of effect of water on sorption and radial gas seepage of coal[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(3): 586-593.
[7] 王凯, 李波, 魏建平, 等.水力冲孔钻孔周围煤层透气性变化规律[J].采矿与安全工程学报, 2013, 30(5): 778-784. WANG Kai, LI Bo, WEI Jianping, et al. Change regulation of coal seam permeability around hydraulic flushing borehole[J]. Journal of Mining & Safety Engineering, 2013, 30(5): 778-784.
[8] 张天军, 庞明坤, 蒋兴科, 等.负压对抽采钻孔孔周煤体瓦斯渗流特性的影响[J].岩土力学, 2019, 40(7): 2517-2524. ZHANG Tianjun, PANG Mingkun, JIANG Xingke, et al. Influence of negative pressure on gas percolation characteristics of coal body in perforated drilling hole[J]. Rock and Soil Mechanics, 2019, 40(7): 2517-2524.
[9] 孔祥言.高等渗流力学[M].合肥: 中国科学技术大学出版社, 2020: 312-320. [10] 孙可明, 梁冰, 王锦山.煤层气开采中两相流阶段的流固耦合渗流[J].辽宁工程技术大学学报(自然科学版), 2001, 20(1): 36-39. SUN Keming, LIANG Bing, WANG Jinshan. The fluid-solid-coupled seepage of two phase fluid(gas and water) in coal seams gas reservoir[J]. Journal of Liaoning Technical University(Natural Science), 2001, 20(1): 36-39.
[11] 盛建龙, 韩云飞, 叶祖洋, 等.粗糙裂隙水、气两相流相对渗透系数模型与数值分析[J].岩土力学, 2020, 41(3): 1048-1055. SHENG Jianlong, HAN Yunfei, YE Zuyang, et al. Relative permeability model for water-air two-phase flow in rough-walled fractures and numerical analysis[J]. Rock and Soil Mechanics, 2020, 41(3): 1048-1055.
[12] 王锦山.煤层气储层两相流渗透率试验研究[J].西安科技大学学报, 2006, 26(1): 24-26. WANG Jinshan. Experimental research on permeability of double state flow in CBM reservoir[J]. Journal of Xi’an University of Science and Technology, 2006, 26(1): 24-26.
[13] 张晓莹.三维应力对煤层气-水两相渗流特性影响实验研究[J].水资源与水工程学报, 2011, 22(3): 55-57. ZHANG Xiaoying. Experiment on effect of three-dimensional stresses upon seepage flows characteristics of coalbed gas-water double phases[J]. Journal of Water Resources and Water Engineering, 2011, 22(3): 55-57.
[14] HUANG Jingwei, XIAO Feng, LABRA C, et al. DEM-LBM simulation of stress-dependent absolute and relative permeabilities in porous media[J]. Chemical Engineering Science, 2021, 239: 116633. [15] FAGBEMI S, TAHMASEBI P, PIRI M. Pore-scale modeling of multiphase flow through porous media under triaxial stress[J]. Advances in Water Resources, 2018, 122: 206-216. [16] 李波波, 李建华, 杨康, 等.考虑水分影响的煤岩渗透率模型及演化规律[J].煤炭学报, 2019, 44(11): 3396-3403. LI Bobo, LI Jianhua, YANG Kang, et al. Coal permeability model and evolution law considering water influence[J]. Journal of China Coal Society, 2019, 44(11): 3396-3403.
[17] 赖令彬, 潘婷婷, 张虎俊, 等.相对渗透率与含水饱和度关系微观机理[J].科学技术与工程, 2019, 19(12): 115-122. LAI Lingbin, PAN Tingting, ZHANG Hujun, et al. Microscopic mechanism of relationship between relative permeability ratio and fluid saturation in porous medium[J]. Science Technology and Engineering, 2019, 19(12): 115-122.
[18] 张天军, 景晨, 张磊, 等.含孔试样孔周破坏的应变局部化特征[J].煤炭学报, 2020, 45(12): 4087-4094. ZHANG Tianjun, JING Chen, ZHANG Lei, et al. Strain localization characteristics of perforation failure of perforated specimens[J]. Journal of China Coal Society, 2020, 45(12): 4087-4094.
[19] 张天军, 尚宏波, 李树刚, 等.三轴应力下不同粒径破碎砂岩渗透特性试验[J].岩土力学, 2018, 39(7): 2361-2370. ZHANG Tianjun, SHANG Hongbo, LI Shugang, et al. Permeability tests of fractured sandstone with different sizes of fragments under three-dimensional stress states[J]. Rock and Soil Mechanics, 2018, 39(7): 2361-2370.
[20] 郁邦永, 潘书才, 魏建军, 等.承压饱和破碎岩石颗粒破碎及渗透率演化特征研究[J].采矿与安全工程学报, 2020, 37(3): 208-214. YU Bangyong, PAN Shucai, WEI Jianjun, et al. Particle crushing and permeability evolution of saturated broken rock under compaction[J]. Journal of Mining & Safety Engineering, 2020, 37(3): 208-214.
[21] BHAGWAT S M, GHAJAR A J. Experimental investigation of non-boiling gas-liquid two phase flow in downward inclined pipes[J]. Experimental Thermal and Fluid Science, 2017, 89: 219-237. [22] BRINK G, HEYMANN G. Soil collapse form an effective stress perspective[J]. Journal of the South African Institution of Civil Engineering, 2014, 56(3): 30-33.
计量
- 文章访问数: 194
- HTML全文浏览量: 63
- PDF下载量: 119