• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

外在水分对长焰煤孔隙结构及自燃特性的影响研究

赵海波

赵海波. 外在水分对长焰煤孔隙结构及自燃特性的影响研究[J]. 煤矿安全, 2023, 54(5): 205-210.
引用本文: 赵海波. 外在水分对长焰煤孔隙结构及自燃特性的影响研究[J]. 煤矿安全, 2023, 54(5): 205-210.
ZHAO Haibo. Effect of external moisture on pore structure and spontaneous combustion characteristics of long-flame coal[J]. Safety in Coal Mines, 2023, 54(5): 205-210.
Citation: ZHAO Haibo. Effect of external moisture on pore structure and spontaneous combustion characteristics of long-flame coal[J]. Safety in Coal Mines, 2023, 54(5): 205-210.

外在水分对长焰煤孔隙结构及自燃特性的影响研究

Effect of external moisture on pore structure and spontaneous combustion characteristics of long-flame coal

  • 摘要: 为了研究煤体浸水后的孔隙结构和氧化自燃特征,将长焰煤制备成含水率为4%~20%的水浸煤,采用全自动比表面积分析仪和同步热分析仪分析原煤及水浸煤的孔隙结构特征和热失重规律,得到原煤及水浸煤的特征温度,并通过动力学分析计算出表观活化能。结果表明:随着煤中含水量的增多,煤比表面积和平均孔径逐渐增大,同时,高位吸附温度和干裂温度逐渐增大,即30~125 ℃内,水分对煤氧反应的抑制作用占主导地位;当温度超过125 ℃后,水浸煤的质量最大值温度和燃点温度均低于原煤;煤中水分蒸发,水浸煤的较大孔隙有利于氧气吸附,主要表现为促进作用,且含水率为12%的煤样的表观活化能最小,促进效果最佳。
    Abstract: To research the pore structure and oxidation spontaneous combustion characteristics of coal after water immersion, long-flame coal was prepared into water-soaked coal with water content of 4%-20%. Automatic specific surface area analyzer and simultaneous thermal analyzer were adopted to analyze the pore structure characteristics and thermal weight loss law of raw coal and water-soaked coal. The characteristic temperatures of raw coal and water-soaked coal were obtained, and apparent activation energy was calculated by kinetic analysis. Results indicated that with the increase of moisture in coal, the specific surface area and average pore diameter of coal gradually increased. Meanwhile, the high adsorption temperature and dry crack temperature gradually increased. In the range of 30-125 ℃, the inhibition of water on coal oxygen reaction was dominant. When the temperature exceeded 125 ℃, the maximum mass temperature and ignition point temperature of water-soaked coal were lower than that of raw coal, the water in coal evaporated, and the large pores of the water-soaked coal were conducive to oxygen adsorption, which was mainly manifested in the promotion effect. Meanwhile, the apparent activation energy of coal with water content of 12% was the smallest and the promotion effect was the best.
  • [1] 赵婧昱, 宋佳佳, 郭涛, 等.基于煤火发展演化的松散煤体自燃温度纵深蔓延特征[J].煤炭学报, 2021, 46(6): 1759-1767.ZHAO Jingyu, SONG Jiajia, GUO Tao, et al. Temperature field migration characteristics of loose coal based on experimental scale[J]. Journal of China Coal Society, 2021, 46(6):1759-1767.
    [2] 邓军, 刘乐, 王彩萍, 等.贫煤氧化燃烧热效应及热动力学参数研究[J].煤矿安全, 2021, 52(12): 35-41.

    DENG Jun, LIU Le, WANG Caiping, et al. Research on thermal effect and thermo kinetic parameters during oxidation combustion of lean coal[J]. Safety in Coal Mines, 2021, 52(12): 35-41.

    [3] 顾大钊, 张建民.西部矿区现代煤炭开采对地下水赋存环境的影响[J].煤炭科学技术, 2012, 40(12): 114-117.

    GU Dazhao, ZHANG Jianmin. Modern coal mining affected to underground water deposit environment in west China mining area[J]. Coal Science and Technology, 2012, 40(12): 114-117.

    [4] BU Y, NIU HY, WANG H, et al. Study on pore structure change and lean oxygen re-ignition characteristics of high-temperature oxidized water-immersed coal[J]. Fuel, 2022, 323: 124346.
    [5] 赵婧雯, 王文才, 付鹏, 等.水浸风干过程对煤自燃特性影响的实验研究[J].煤矿安全, 2022, 53(6): 37-43.

    ZHAO Jingwen, WANG Wencai, FU Peng, et al. Experimental study on influence of water immersion and air-drying process on coal spontaneous combustion characteristics[J]. Safety in Coal Mines, 2022, 53(6): 37-43.

    [6] 周鑫隆, 凌玉寿.低含水状态煤自燃倾向性实验研究[J].煤炭技术, 2014, 33(6): 274-276.

    ZHOU Xinlong, LING Yushou. Experimental research on spontaneous combustion of coal under low moisture state[J]. Coal Technology, 2014, 33(6): 274-276.

    [7] 梁浦浦, 徐永亮, 左宁.含水量对长焰煤氧化自燃特性的影响实验研究[J].煤矿安全, 2018, 49(11): 49-53.

    LIANG Pupu, XU Yongliang, ZUO Ning. Experimental study on influence of moisture content on oxidation spontaneous combustion characteristics of long-flame coal[J]. Safety in Coal Mines, 2018, 49(11): 49-53.

    [8] 张晓昱, 张玉龙, 王俊峰, 等.外来水分对煤自燃过程影响及作用机制研究[J].燃料化学学报, 2020, 48(1): 1-10.

    ZHANG Xiaoyu, ZHANG Yulong, WANG Junfeng, et al. Study on the effect and mechanism of foreign moisture on coal spontaneous combustion[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 1-10.

    [9] 徐长富, 樊少武, 姚海飞, 等.水分对煤自燃临界温度影响的试验研究[J].煤炭科学技术, 2015, 43(7): 65-68.

    XU Changfu, FAN Shaowu, YAO Haifei, et al. Experiment study on moisture affected to critical temperature of coal spontaneous combustion[J]. Coal Science and Technology, 2015, 43(7): 65-68.

    [10] 李锋, 安世岗, 邢真强.水浸煤孔隙结构及自燃特性试验研究[J].煤炭科学技术, 2019, 47(S2): 208-212.

    LI Feng, AN Shigang, XING Zhenqiang. Experimental study on pore structure and spontaneous combustion characteristics of submerged coal[J]. Coal Science and Technology, 2019, 47(S2): 208-212.

    [11] WANG C P, YANG N N, XIAO Y, et al. Effects of moisture and associated pyrite on the microstructure of anthracite coal for spontaneous combustion[J]. ACS omega, 2020, 42(5): 27607-27617.
    [12] 易欣, 葛龙, 张少航, 等.基于指标气体法对水浸煤的氧化特性研究[J/OL].煤炭科学技术:1-7[2023-02-03].DOI: 10.13199/j.cnki.cst.2021-0866.

    YI Xin, GE Long, ZHANG Shaohang, et al. Research on oxidation characteristics of aqueous coal based on index gas method[J/OL]. Coal Science and Technology, 2022:1-7[2023-02-03].DOI: 10.13199/j.cnki.cst.2021-0866.

    [13] HUANG Z, LI J, GAO Y, et al. Thermal behavior and microscopic characteristics of water-soaked coal spontaneous combustion[J]. Combustion Science and Technology, 2022, 194(3): 636-654.
    [14] GB/T 23561.6—2009煤和岩石物理力学性质测定方法[S].
    [15] LU X, LIANG X, XU P, et al. A numerical study on oxygen adsorption in porous media of coal rock based on fractal geometry[J]. Royal Society Open Science, 2020, 7(2): 191337.
    [16] 张九零, 阮杲阳, 王苗苗.浸水程度对煤自燃特性影响研究[J].中国矿业, 2022, 31(4): 132-139.

    ZHANG Jiuling, YUAN Gaoyang, WANG Miaomiao. Study on the influence of immersion degree on coal spontaneous combustion characteristics[J]. China Mining Magazine, 2022, 31(4): 132-139.

    [17] 王凯.陕北侏罗纪煤氧化自燃特性实验研究[D].西安: 西安科技大学, 2013.
    [18] 肖旸, 李达江, 吕慧菲, 等.咪唑类离子液体抑制煤氧化热动力学参数的研究[J].煤炭学报, 2019, 44(S1): 187-194.

    XIAO Yang, LI Dajiang, L?譈 Huifei, et al. Research on imidazolium ionic liquid inhibiting coal oxidation thermo-kinetics parameters[J]. Journal of China Coal Society, 2019, 44(S1): 187-194.

    [19] 王苗苗.浸水程度对煤自燃特性影响的实验研究[D].唐山: 华北理工大学, 2021.
  • 期刊类型引用(19)

    1. 马治青. 含水层上方煤层开采过程中覆岩移动及底板岩层损伤演化特征分析. 采矿技术. 2025(01): 1-5 . 百度学术
    2. 陈太勇,刘国磊,常笑笑,吴延成,马秋峰,郝喜庆,赵成博. 采场正断层损伤活化机理与特征. 煤矿安全. 2025(02): 126-136 . 本站查看
    3. 孙文斌,田殿金,马诚,薛彦超,杨灿,朱开鹏. 侧限条件下断层破碎岩体变形及渗流侵蚀特性. 煤田地质与勘探. 2025(01): 193-203 . 百度学术
    4. 王红梅,宁明诚,鲁海峰,周恒心. 断层影响下煤层开采突水风险流固耦合数值模拟研究. 煤炭技术. 2024(01): 180-184 . 百度学术
    5. 赵伟,刘洲,王琦,李文江. 陈四楼煤矿地面定向钻孔超前区域治理底板岩溶水害技术. 西安科技大学学报. 2024(01): 84-93 . 百度学术
    6. 朱登奎,张兴华,郁静静,谢彪,雷倩茹,王泉栋. 不同倾角断层对底板透水影响规律研究. 煤炭技术. 2024(03): 184-188 . 百度学术
    7. 杨超,姜淑印. PPGF-灰岩胶结面剪切力学特性试验研究. 金属矿山. 2024(04): 37-45 . 百度学术
    8. 杨晨,唐羽晗,孙远军. 伊犁一矿5号煤层1504E工作面底板水害分析与防治. 内蒙古煤炭经济. 2024(10): 39-41 . 百度学术
    9. 杨鹏. 煤层底板渐进破坏与渗流演化数值模拟研究. 晋控科学技术. 2024(04): 48-51 . 百度学术
    10. 李泽京,王勇,王一,王进,王婉璐,陈国峰. 基于层次分析法的某煤矿水文地质类型评价. 地下水. 2024(05): 24-26 . 百度学术
    11. 李萍,姜旭,段建华,丛琳. 基于微震监测的工作面底板破坏曲面提取方法. 煤炭工程. 2024(11): 140-148 . 百度学术
    12. 邢茂林. 煤层底板区域治理后断层突水原因及探讨. 煤矿安全. 2023(03): 204-211 . 本站查看
    13. 邢茂林. 桃园煤矿F_(28)断层突水原因及堵水技术. 煤炭技术. 2023(06): 156-160 . 百度学术
    14. 许延春,苗葳,宛志红,叶精灵,李磊,邢晁瑞. 底板加固改造工作面“双关键层”控水模型. 煤矿安全. 2023(05): 63-71 . 本站查看
    15. 孙文斌,杨辉,赵金海,薛延东,张晓波,刘倩慧. 断层突水灾变演化过程划分基础试验研究. 煤炭科学技术. 2023(07): 118-128 . 百度学术
    16. 宋团. 干河煤矿2-301工作面底板突水机理及治理技术研究. 煤炭与化工. 2023(09): 72-75 . 百度学术
    17. 杨峰,李明鑫,殷聪,江昱卓,张加齐. 充填开采底板隔水层损伤破坏特征及稳定性控制. 煤炭技术. 2023(11): 23-29 . 百度学术
    18. 林征,王来斌,刘梦琪. 基于GIS与熵值法的煤层底板突水危险性评价. 河南科技. 2023(23): 66-69 . 百度学术
    19. 刘倩,许光泉,石怡煊,刘晓娟,徐立佳,何文乔. 采区岩溶水文地质条件综合分析及疏放性评价. 宿州学院学报. 2023(12): 44-49 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  15
  • HTML全文浏览量:  0
  • PDF下载量:  7
  • 被引次数: 25
出版历程
  • 发布日期:  2023-05-19

目录

    /

    返回文章
    返回