黄陵矿区综采工作面卸压瓦斯流动通道研究及工程应用
Research and engineering application of pressure relief gas flow channel in fully mechanized mining face of Huangling Mining Area
-
摘要: 利用高位钻孔抽采覆岩卸压瓦斯是高瓦斯矿井顶板瓦斯治理的重要技术手段,为了进一步提升高位钻孔瓦斯抽采效果,采用物理相似模拟分析了顶板采动裂隙形态分布特征,深入研究了采空区瓦斯宏观流动通道的形成及演化规律,并将其运用到Fluent模拟软件中,分析高位钻孔在不同抽采垂距、平距下对采空区瓦斯抽采效果的影响规律,进而提出高位钻孔抽采的优化技术参数。结果表明:通过物理相似模拟研究得到的试验工作面断裂带高度为68 m,垮落带高度为10.5 m;在水平方向上瓦斯宏观流动通道区、垂直方向上瓦斯过渡流通道区内布置高位钻孔将提高采空区瓦斯的抽采效率;结合数值模拟研究得到的试验工作面最佳抽采位置为距煤层垂直距离23 m,水平距离25 m。综合考虑工作面地质条件变化特征及钻孔施工,在同一垂直层位设置2个间距为10 m的抽采钻孔,并其使最佳抽采位置在2个钻孔之间,现场瓦斯抽采效果良好,保障了工作面安全回采。Abstract: The extraction of overburden unloading gas by high level boreholes is an important technical tool for roof gas management in high gas mines. In order to further improve the effect of high level borehole gas extraction, physical similarity simulation was applied to analyze the morphological distribution characteristics of roof mining fissures. The formation and evolution rules of macroscopic gas flow channels in the mining area were studied and applied to Fluent simulation software to analyze the influence of high level drilling on the gas extraction effect in the mining area under different vertical and horizontal extraction distances, and then the optimized technical parameters for high level drilling is proposed. The results show that the height of the fracture zone of the test working face is 68 m and the height of the caving zone is 10.5 m. High level drilling in the horizontal gas flow channel and vertical gas transition flow channel will improve the extraction efficiency of the gas in the mining area. Combined with the numerical simulation study, the best extraction position of the test working face was 23 m vertically and 25 m horizontally from the coal seam. Taking into account the changing geological conditions of the working face and the construction of the borehole, two extraction boreholes with a spacing of 10 m were set in the same vertical layer, and the best extraction position was between the two boreholes. The gas extraction effect on site was good, ensuring the safe recovery of the working face.
-
-
[1] 袁亮.我国深部煤与瓦斯共采战略思考[J].煤炭学报, 2016, 41(1): 1-6. YUAN Liang. Strategic thinking of simultaneous exploitation of coal and gas in deep mining[J]. Journal of China Coal Society, 2016, 41(1): 1-6.
[2] 刘超, 孙宝强, 李树刚, 等.厚煤层双重卸压采动覆岩裂隙分布特征及卸压瓦斯抽采技术[J].煤矿安全, 2021, 52(12): 89-96. LIU Chao, SUN Baoqiang, LI Shugang, et al. Distribution characteristics of fractured rock in overburden induced by double pressure relief mining of thick coal seam and pressure relief gas extraction technology[J]. Safety in Coal Mines, 2021, 52(12): 89-96.
[3] 李树刚, 杨二豪, 林海飞, 等.深部开采卸压瓦斯精准抽采体系构建及实践[J].煤炭科学技术, 2021, 49(5): 1-10. LI Shugang, YANG Erhao, LIN Haifei, et al. Construction and practice of accurate gas drainage system for pressure relief gas in deep mining[J]. Coal Science and Technology, 2021, 49(5): 1-10.
[4] 聂敏忠.朱庄煤矿高位钻孔瓦斯抽放技术的应用[J].煤炭科学技术, 2008, 36(8): 55-57. NIE Minzhong. Application of gas drainage technology with high level boreholes in Zhuzhuang Mine[J]. Coal Science and Technology, 2008, 36(8): 55-57.
[5] 杨宏伟, 姜福兴, 尹永明.基于微地震监测技术的顶板高位钻孔优化技术研究[J].煤炭学报, 2011, 36(S2): 436-439. YANG Hongwei, JIANG Fuxing, YIN Yongming. Based on micro-seismic monitoring technology of the high roof drilling optimization technology[J]. Journal of China Coal Society, 2011, 36(S2): 436-439.
[6] 李树刚, 林海飞, 赵鹏翔, 等.采动裂隙椭抛带动态演化及煤与甲烷共采[J].煤炭学报, 2014, 39(8): 1455-1462. LI Shugang, LIN Haifei, ZHAO Pengxiang, et al. Dynamic evolution of mining fissure elliptic paraboloid zone and extraction coal and gas[J]. Journal of China Coal Society, 2014, 39(8): 1455-1462.
[7] 刘振明, 年军, 吕晓波, 等.斜沟煤矿高位钻孔合理终孔位置模拟与试验研究[J].煤炭科学技术, 2018, 46(5): 120-124. LIU Zhenming, NIAN Jun, LYU Xiaobo, et al. Numerical and experimental study on reasonable bottom location of high level boreholes in Xiegou Mine[J]. Coal Science and Technology, 2018, 46(5): 120-124.
[8] 徐刚, 王云龙, 张天军, 等.厚煤层采动覆岩裂隙分布特征及卸压瓦斯抽采技术[J].煤矿安全, 2020, 51(1): 150-155. XU Gang, WANG Yunlong, ZHANG Tianjun, et al. Fracture distribution characteristics of mining-induced overburden in thick coal seam and pressure relief gas extraction technology[J]. Safety in Coal Mines, 2020, 51(1): 150-155.
[9] 马海峰, 王文龙, 李传明, 等.叠加开采裂隙场演化与优势瓦斯通道形成机制[J].中国安全科学学报, 2017, 27(6): 133-138. MA Haifeng, WANG Wenlong, LI Chuanming, et al. Evolution of crack field and formation mechanism of advantage gas channels in superposition mining[J]. China Safety Science Journal, 2017, 27(6): 133-138.
[10] 刘清宝, 陈龙, 龚选平, 等.综放工作面初采期抛物线型高位钻孔瓦斯抽采研究[J].工矿自动化, 2021, 47(7): 106-114. LIU Qingbao, CHEN Long, GONG Xuanping, et al. Study on gas extraction from parabolic high level drilling during the initial mining period of fully mechanized caving face[J]. Industry and Mine Automation, 2021, 47(7): 106-114.
[11] 武旭东, 邢玉忠.基于CFD数值模拟的顶板走向长钻孔瓦斯抽采效果及参数优化[J].矿业安全与环保, 2019, 46(6): 107-112. WU Xudong, XING Yuzhong. Gas drainage effect and parameter optimization of long borehole along roof strike based on CFD numerical simulation[J]. Mining Safety and Environmental Protection, 2019, 46(6): 107-112.
[12] 丁洋, 朱冰, 李树刚, 等.高突矿井采空区卸压瓦斯精准辨识及高效抽采[J].煤炭学报, 2021, 46(11): 3565-3577. DING Yang, ZHU Bing, LI Shugang, et al. Accurate identification and efficient drainage of relieved methane in goaf of high outburst mine[J]. Journal of China Coal Society, 2021, 46(11): 3565-3577.
[13] 张文琦, 张兴文, 孙刘咏, 等.特厚煤层综放开采瓦斯运储区演化及定向钻孔抽采技术[J].矿业安全与环保, 2022, 49(3): 76-83. ZHANG Wenqi, ZHANG Xingwen, SUN Liuyong, et al. Evolution of gas transportation storage area and directional borehole drainage technology in ultra-thick coal seam with fully mechanized caving mining[J]. Mining Safety and Environmental Protection, 2022, 49(3): 76-83.
[14] 肖峻峰, 樊世星, 卢平, 等.近距离高瓦斯煤层群倾向高抽巷抽采卸压瓦斯布置优化[J].采矿与安全工程学报, 2016, 33(3): 564-570. XIAO Junfeng, FAN Shixing, LU Ping, et al. Layout parameter optimization of highly located drainage roadway along seam for controlling gas with pressure relief from close distance methane-rich seam group[J]. Journal of Mining & Safety Engineering, 2016, 33(3): 564-570.
[15] 邵国安, 邹永洺.高瓦斯近距离煤层采空区卸压瓦斯大直径钻孔抽采试验研究[J].煤矿安全, 2020, 51(9): 6-10. SHAO Guoan, ZOU Yongming. Experimental study on pressure relief gas extraction of goaf with large diameter borehole in high gas close distance coal seams[J]. Safety in Coal Mines, 2020, 51(9): 6-10.
[16] 张勇, 许力峰, 刘珂铭, 等.采动煤岩体瓦斯通道形成机制及演化规律[J].煤炭学报, 2012, 37(9): 1444-1450. ZHANG Yong, XU Lifeng, LIU Keming, et al. Formation mechanism and evolution laws of gas flow channel in mining coal and rock[J]. Journal of China Coal Society, 2012, 37(9): 1444-1450.
[17] 李春元, 张勇, 李佳, 等.采空区瓦斯宏观流动通道的高位钻孔抽采技术[J].采矿与安全工程学报, 2017, 34(2): 391-397. LI Chunyuan, ZHANG Yong, LI Jia, et al. Highly-located boreholes drainage technology of gas macroscopic flow channel in goaf[J]. Journal of Mining & Safety Engineering, 2017, 34(2): 391-397.
-
期刊类型引用(5)
1. 林海飞,刘思博,双海清,徐培耘,周斌,罗荣卫. 沿空留巷开采覆岩裂隙演化规律及卸压瓦斯抽采技术. 采矿与岩层控制工程学报. 2024(01): 52-64 . 百度学术
2. 曹艺钟. 侧向高位钻孔在高瓦斯特厚煤层中的立体层位研究. 煤炭与化工. 2024(06): 132-136 . 百度学术
3. 曹艺钟. 大采高特厚煤层掘进工作面瓦斯治理研究. 内蒙古煤炭经济. 2024(18): 13-15 . 百度学术
4. 尹鹏飞,李杰,刘思迪. 轩岗矿区2号煤层工作面顶抽巷层位优化研究. 地质灾害与环境保护. 2024(04): 99-104 . 百度学术
5. 邹庆. 高瓦斯矿井综合治理方案优化研究. 内蒙古煤炭经济. 2024(20): 13-15 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 28
- HTML全文浏览量: 0
- PDF下载量: 10
- 被引次数: 5