不同煤阶煤孔隙结构分形表征及其对甲烷吸附特性的影响
Fractal characterization of pore structure of coal with different ranks and its effect on methane adsorption characteristics
-
摘要: 煤储层中孔隙结构的发育程度决定了煤体瓦斯的吸附性能,通过低温液氮吸附实验测试了长焰煤、焦煤和无烟煤3种不同变质程度煤样的孔隙结构;基于分形理论对孔隙结构进行了量化表征,并结合煤的甲烷等温吸附实验,深入分析了不同变质程度煤孔隙结构对甲烷吸附特性的影响。结果显示:变质程度与孔隙分形维数D1呈现出“浴盆式”变化规律,与分形维数D2符合线性负相关关系;而煤样的微孔比表面积和孔容均与吸附常数a呈正相关关系,即微孔比表面积和孔容越大,煤的吸附能力越强;随着孔隙分形维数D1的增加,吸附常数a呈现出近似线性增长趋势,煤体孔隙结构越不光滑,比表面积也会越大,从而使得煤的甲烷极限吸附量也会有所升高。Abstract: The development of pore structure in coal reservoirs determines the adsorption performance of coal gas. The pore structure of three coal samples with different degrees of metamorphism, namely long-flame coal, coking coal and anthracite, was tested by low-temperature liquid nitrogen adsorption experiments. The pore structure was quantitatively characterized based on fractal theory, and the effect of the pore structure on the methane adsorption properties of coals with different degrees of metamorphism was analyzed in depth in combination with the methane isothermal adsorption experiments. The results showed that the degree of metamorphism and the pore fractal dimension D1 showed a “bathtub” variation, and a linear negative correlation with D2; while the specific surface area and pore volume of the coal sample were positively correlated with the adsorption constant a. The larger specific surface area and pore volume, the stronger the adsorption capacity of coal. With the increase of pore fractal dimension D1, the adsorption constant a presents an approximate linear growth trend. It can be seen that the less smooth the pore structure of coal, the larger the specific surface area will be, so that the ultimate methane adsorption capacity of coal will also increase.
-
-
[1] 周世宁.瓦斯在煤层中流动的机理[J].煤炭学报, 1990, 15(1): 15-24. ZHOU Shining. Mechanism of gas flow in coal seams[J]. Journal of China Coal Society, 1990, 15(1): 15-24.
[2] 高尚, 王亮, 高杰, 等.基于分形理论的不同变质程度硬煤孔隙结构试验研究[J].煤炭科学技术, 2018, 46(8): 93-100. GAO Shang, WANG Liang, GAO Jie, et al. Experimental study on pore structure of hard coal with different degrees of metamorphism based on fractal theory[J].Coal Science and Technology, 2018, 46(8): 93-100.
[3] 刘怀谦, 王磊, 谢广祥, 等.煤体孔隙结构综合表征及全孔径分形特征[J].采矿与安全工程学报, 2022, 39(3): 459-469. LIU Huaiqian, WANG Lei, XIE Guangxiang, et al. Comprehensive characterization and full pore size fractal characteristics of coal pore structure[J]. Journal of Mining & Safety Engineering, 2022, 39(3): 458-469.
[4] 黄赞, 孙斌, 杨青, 等.鸡西盆地煤储层吸附孔特征及分形表征研究[J].煤炭科学技术, 2021, 49(5): 218-226. HUANG Zan, SUN Bin, YANG Qing, et al. Study on characterization and fractal features of adsorption pores of coal reservoirs in Jixi Basin[J]. Coal Science and Technology, 2021, 49(5): 218-226.
[5] 王聪, 江成发, 储伟.煤的分形维数及其影响因素分析[J].中国矿业大学学报, 2013, 42(6): 1009-1014. WANG Cong, JIANG Chengfa, CHU Wei. Fractal dimension of coals and analysis of its influencing factors[J]. Journal of China University of Mining & Technology, 2013, 42(6): 1009-1014.
[6] YAO Yanbin, LIU Dameng, TANG Dazhen, et al. Fractal characterization of adsorption-pores of coals from North China: An investigation on CH4 adsorption capacity of coals[J]. International Journal of Coal Geology, 2008, 73(1): 27-42. [7] 陈刘瑜, 李希建, 沈仲辉, 等.贵州北部突出煤的孔隙结构及分形特征研究[J].中国安全科学学报, 2020, 30(2): 66-72. CHEN Liuyu, LI Xijian, SHEN Zhonghui, et al. Pore structure and fractal characteristics of outburst coal in northern Guizhou[J]. China Safety Science Journal, 2020, 30(2): 66-72.
[8] 周三栋, 刘大锰, 蔡益栋, 等.低阶煤吸附孔特征及分形表征[J].石油与天然气地质, 2018, 39(2): 373-383. ZHOU Sandong, LIU Dameng, CAI Yidong, et al. Characterization and fractal nature of adsorption pores in low rank coal[J]. Oil & Gas Geology, 2018, 39(2): 373-383.
[9] 宋晓夏, 唐跃刚, 李伟, 等.中梁山南矿构造煤吸附孔分形特征[J].煤炭学报, 2013, 38(1): 134-139. SONG Xiaoxia, TANG Yuegang, LI Wei, et al. Fractal characteristics of adsorption pores of tectonic coal from Zhongliangshan southern coalmine[J]. Journal of China Coal Society, 2013, 38(1): 134-139.
[10] 张少锋, 李雅阁, 秦兴林.沁水盆地煤储层孔隙分形特征及其对瓦斯吸附的影响[J].煤炭科学技术, 2019, 47(3): 163-167. ZHANG Shaofeng, LI Yage, QIN Xinglin. Fractal characteristics of coal reservoir pores in Qinshui basin and their effects on gas adsorption[J]. Coal Science and Technology, 2019, 47(3): 163-167.
[11] 李文华, 白向飞, 杨金和, 等.烟煤镜质组平均最大反射率与煤种之间的关系[J].煤炭学报, 2006, 31(3): 342 -345. LI Wenhua, BAI Xiangfei, YANG Jinhe, et al. Correspondence between mean maximum reflectance of vitrinite and classification of bituminous coals[J]. Journal of China Coal Society, 2006, 31(3): 342-345.
[12] 陈卓, 雷东记, 张玉贵.构造煤纳米级孔隙对瓦斯吸附能力的影响研究[J].煤矿安全, 2019, 50(3): 1-4. CHEN Zhuo, LEI Dongji, ZHANG Yugui. Study on influence of nanoscale pores of tectonic coal on gas adsorption capacity[J]. Safety in Coal Mines, 2019, 50(3): 1-4.
[13] 李祥春, 李忠备, 张良, 等.不同煤阶煤样孔隙结构表征及其对瓦斯解吸扩散的影响[J].煤炭学报, 2019, 44(S1): 142-156. LI Xiangchun, LI Zhongbei, ZHANG Liang, et al. Pore structure characterization of various rank coals and its effect on gas desorption and diffusion[J]. Journal of China Coal Society, 2019, 44(S1): 142-156.
[14] 尹振勇, 许浩, 汤达祯, 等.不同煤阶煤热解过程中孔隙结构变化规律研究[J].煤炭科学技术, 2019, 47(9): 74-79. YIN Zhenyong, XU Hao, TANG Dazhen, et al. Study on pore structure change different coal grade pyrolysis[J]. Coal Science and Technology, 2019, 47(9): 74-79.
[15] WANG Zhenyang, CHENG Yuanping, ZHANG Kai-zhong, et al. Characteristics of microscopic pore structure and fractal dimension of bituminous coal by cyclic gas adsorption/desorption: An experimental study[J]. Fuel, 2018, 232(15): 495-505. [16] 蒋静宇, 程远平, 张硕.低阶煤孔隙结构定量表征及瓦斯吸附放散特性[J].煤炭学报, 2021, 46(10): 3221-3233. JIANG Jingyu, CHENG Yuanping, ZHANG Shuo. Quantitative characterization of pore structure and gas adsorption and diffusion properties of low-rank coal[J]. Journal of China Coal Society, 2021, 46(10): 3221-3233.
[17] 杨明, 柳磊, 刘佳佳, 等.中阶煤孔隙结构的氮吸附-压汞-核磁共振联合表征研究[J].煤炭科学技术, 2021, 49(5): 67-74. YANG Ming, LIU Lei, LIU Jiajia, et al. Study on joint characterization of pore structure of middle-rank coal by nitrogen adsorption-mercury intrusion-NMR[J]. Coal Science and Technology, 2021, 49(5): 67-74.
[18] 李子文, 郝志勇, 庞源, 等.煤的分形维数及其对瓦斯吸附的影响[J].煤炭学报, 2015, 40(4): 863-869. LI Ziwen, HAO Zhiyong, PANG Yuan, et al. Fractal dimensions of coal and their influence on methane adsorption[J]. Journal of China Coal Society, 2015, 40(4): 863-869.
[19] 赵建光, 王猛, 马如英, 等.基于压汞法对黔西青龙矿构造煤孔隙结构特征的研究[J].煤炭科学技术, 2022, 50(10): 159-168. ZHAO Jianguang, WANG Meng, MA Ruying, et al. Study on pore structure characteristics of Qinglong Coal Mine in Western Guizhou based on mercury injection[J]. Coal Science and Technology, 2022, 50(10): 159-168.
[20] 王俏, 王兆丰, 代菊花, 等.深部煤层无烟煤甲烷吸附特性研究[J].煤矿安全, 2021, 52(6): 28-33. WANG Qiao, WANG Zhaofeng, DAI Juhua, et al. Study on methane adsorption characteristics of anthracite in deep coal seam[J]. Safety in Coal Mines, 2021, 52(6): 28-33.
[21] 张凯, 汤达祯, 陶树, 等.不同变质程度煤吸附能力影响因素研究[J].煤炭科学技术, 2017, 45(5): 192-197. ZHANG Kai, TANG Dazhen, TAO Shu, et al. Study oninfluencing factors of adsorption capacity of different metamorphic degree coal[J]. Coal Science and Technology, 2017, 45(5): 192-197.
-
期刊类型引用(6)
1. 韩瑞达. 基于GIS与AHP的煤层顶板涌(突)水危险性研究. 地质装备. 2025(01): 25-32 . 百度学术
2. 董绪峰. 承压水上含陷落柱构造煤层底板渗流路径研究. 煤炭科技. 2025(01): 105-109 . 百度学术
3. 魏启明,赵宝峰,马进勇,张泽源,马志贤. 煤层底板砂岩含水层水文地质特征的分布式放水试验探查研究. 中国煤炭. 2024(05): 32-39 . 百度学术
4. 刘艳冬,刘滢,卢兰萍,白峰青,王铁记,卫皓皓. 基于ZOA-CNN-GRU模型的煤层底板突水等级预测. 中国煤炭. 2024(06): 44-51 . 百度学术
5. 杨茹蕙,李小萌,王铁记. 基于IAHP-EWM博弈论的煤层底板突水影响因素研究. 煤炭与化工. 2024(07): 43-47+52 . 百度学术
6. 安律宁,陈继福,董广铭,李玉兵. 基于层次聚类模糊综合评判的矿井突水危险性评价. 煤炭与化工. 2023(10): 49-56 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 29
- HTML全文浏览量: 4
- PDF下载量: 13
- 被引次数: 8