保护层不对称卸压工作面分区防冲技术
Zonal prevention and control technology for rock burst in asymmetrical pressure-relief working face under protective layer
-
摘要: 为有效防控保护层不对称卸压工作面冲击地压的发生,以唐山矿0291工作面为工程背景,采用理论分析和数值模拟等方法,分析了工作面发生冲击地压的影响因素及发生区域。结果表明:煤层开采深度、煤层及其顶板的冲击倾向性、上保护层遗留煤柱、本煤层采空区煤柱及厚硬顶板是诱发冲击地压的潜在影响因素;工作面回采前,受上保护层遗留煤柱及本煤层采空区影响,0291工作面两巷应力呈不对称分布,回风巷高应力区主要位于0250采空区切眼及终采线下方,运输巷高应力区主要位于0251采空区切眼下方;工作面回采阶段具有明显的分区特性,回采初期,运输巷围岩超前应力高于回风巷,应加强运输巷的监测并及时采取防冲措施;当工作面进入0251采空区下方时,运输巷围岩应力迅速降低,防治重点应由运输巷转移至回风巷。依据数值模拟分析结果,划分了冲击危险区,提出了工作面回采过程中的分区防治措施。现场监测结果表明,采取的措施可以有效降低冲击地压的发生。Abstract: In order to effectively prevent and control the rock burst in the asymmetric pressure-relief working face under protective layer, taking the 0291 working face of Tangshan Coal Mine as the engineering background, the theoretical analysis and numerical simulation methods were adopted, and the potential influence factors of rock burst in the working face and the occurrence area were analyzed. The results show that the mining depth, bursting tendency of coal seam and its roof, residual pillars in upper protective layer and goaf of the coal seam and thick and hard roof are the potential influence factors of rock burst. Before mining, under the influence of the residual pillars in the protective layer and goaf, the stress of the two tunnels in the 0291 working face shows an asymmetrical distribution. The high stress area of the return airway is mainly located below the cutting line and stop line of the 0250 goaf, while the high stress area of the transportation roadway is mainly located below the cutting line of the 0251 goaf. The working face had obvious zonal characteristics. In the early stage of mining, the advanced stress in surrounding rock of transportation roadway is higher than that of return airway. It is necessary to strengthen the monitoring of transportation roadway and take pressure-relief measures in time. When the working face enters the lower part of 0251 goaf, the surrounding rock stress of the transport roadway decreases rapidly, and the prevention focus should be transferred from the transport roadway to the return air roadway. According to the results of numerical simulation, the impact zones can be divided and the prevention and control measures of impact zones in the mining were put forward. Field monitoring results show that the measures taken can effectively reduce the occurrence of rock burst.
-
-
[1] 蓝航,齐庆新,潘俊锋,等.我国煤矿冲击地压特点及防治技术分析[J].煤炭科学技术,2011,39(1):11-15. LAN Hang, QI Qingxin, PAN Junfeng, et al. Analysis on features as well as prevention and control technology of mine strata pressure bumping in China[J]. Coal Science and Technology, 2011, 39(1): 11-15.
[2] 姜福兴,魏全德,姚顺利,等.冲击地压防治关键理论与技术分析[J].煤炭科学技术,2013,41(6):6-9. JIANG Fuxing, WEI Quande, YAO Shunli, et al. Key theory and technical analysis on mine pressure bumping prevention and control[J]. Coal Science and Technology, 2013, 41(6): 6-9.
[3] 齐庆新,李一哲,赵善坤,等.我国煤矿冲击地压发展70年:理论与技术体系的建立与思考[J].煤炭科学技术,2019,47(9):1-40. QI Qingxin, LI Yizhe, ZHAO Shankun, et al. Seventy years development of coal mine rockburst in China: establishment and consideration of theory and technology system[J]. Coal Science and Technology, 2019, 47(9): 1-40.
[4] 姜福兴,刘烨,刘军,等.冲击地压煤层局部保护层开采的减压机理研究[J].岩土工程学报,2019,41(2):368-375. JIANG Fuxing, LIU Ye, LIU Jun, et al. Pressure-releasing mechanism of local protective layer in coal seam with rock burst[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 368-375.
[5] 沈荣喜,王恩元,刘贞堂,等.近距离下保护层开采防冲机理及技术研究[J]煤炭学报,2011,36(S1):63-67. SHEN Rongxi, WANG Enyuan, LIU Zhentang, et al. Rockburst prevention mechanism and technique of close-distance lower protective seam mining[J]. Journal of China Coal Society, 2011, 36(S1): 63-67.
[6] 庞龙龙,徐学锋,司亮,等.开采上保护层对巨厚砾岩诱发冲击矿压的减冲机制分析[J].岩土力学,2016, 37(S2):120-128. PANG Longong, XU Xuefeng, SI Liang, et al. Analysis of prevention mechanism of upper protective seam mining on rock rockburst induced by thick conglomerate[J]. Rock and Soil Mechanics, 2016, 37(S2): 120-128.
[7] 赵善坤,刘军,姜红兵,等.巨厚砾岩下薄保护层开采应力控制防冲机理[J].煤矿安全,2013,44(9):47-49. ZHAO Shankun, LIU Jun, JIANG Hongbing, et al. Stress control and rock burst prevention mechanism on thin protective seam mining under thick gravel[J]. Safety in Coal Mines, 2013, 44(9): 47-49.
[8] 欧阳振华,周鑫鑫,孙秉成,等.近直立煤层冲击地压自保护卸压机制与防控[J].中国安全科学学报,2021,31(4):64-71. OUYANG Zhenhua, ZHOU Xinxin, SUN Bingcheng, et al. Self-protection pressure relief mechanism and prevention and control of rock burst in near-vertical coal seams[J]. China Safety Science Journal, 2021, 31(4): 64-71.
[9] 陈思,石必明,穆朝民,等.保护层开采过程中增透效果及卸压范围研究[J].煤炭科学技术,2013,41(4):45-49. CHEN Si, SHI Biming, MU Chaomin, et al. Study on seam permeability increased effects and pressure-relaxed range during protective seam mining[J]. Coal Science and Technology, 2013, 41(4): 45-49.
[10] 李树清,龙祖根,罗卫东,等.煤层群下保护层开采保护范围的数值模拟[J].中国安全科学学报,2012,22(6):34-40. LI Shuqing, LONG Zugen, LUO Weidong, et al. Numerical simulation of protection scope when lower-protective layer mined in coal seams[J]. China Safety Science Journal, 2012, 22(6): 34-40.
[11] 高乐,赵斌,周向文,等.遗留煤柱下近距离特厚煤层临空掘巷合理煤柱尺寸[J].煤矿安全,2022,53(2):219-225. GAO Le, ZHAO Bin, ZHOU Xiangwen, et al. Reasonable coal pillar size of gob-side entry driving under residual coal pillar in short distance and extra-thick coal seam[J]. Safety in Coal Mines, 2022, 53(2): 219-225.
[12] 姜福兴,王玉霄,李明,等.上保护层煤柱引发被保护层冲击机理研究[J].岩土工程学报,2017,39(9):1689-1696. JIANG Fuxing, WANG Yuxiao, LI Ming, et al. Mechanism of rockburst occurring in protected coal seam induced by coal pillar of protective coal seam[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1689-1696.
[13] 肖健,陈学习,毕瑞卿.上保护层开采遗留煤柱对保护效果的影响[J].煤矿安全,2022,53(2):86-92. XIAO Jian, CHEN Xuexi, BI Ruiqing. Influence of residual coal pillar from upper protective layer mining on protection effect[J]. Safety in Coal Mines, 2022, 53(2):86-92.
[14] 刘宜平,朱恒忠,殷帅峰.煤柱影响下被保护层开采应力演化特征数值模拟研究[J].煤炭工程,2020,52(9):99-105. LIU Yiping, ZHU Hengzhong, YIN Shuaifeng. Numerical simulation study on the evolution characteristics of mining stress for protected layer under the influence of coal pillar[J]. Coal Engineering, 2020, 52(9): 99-105.
[15] 江丽丽,杨增强,翟春佳,等.上保护层不合理布置对被保护层应力叠加影响效应研究[J].矿业安全与环保,2020,47(2):29-34. JIANG Lili, YANG Zengqiang, ZHAI Chunjia, et al. Study on the influence of the unreasonable layout of upper protective layer on stress superposition of the protected layer[J]. Mining Safety & Environmental Protection, 2020, 47(2): 29-34.
[16] 高新,苗德俊,宋大川.深部煤层冲击地压机理与防治技术[J].煤矿安全,2018,49(12):75-78. GAO Xin, MIAO Dejun, SONG Dachuan. Mechanism and prevention technology of rock burst in deep coal seam[J]. Safety in Coal Mines, 2018, 49(12): 75-78.
[17] 成云海,姜福兴,胡兆锋,等.埋深千米综放采场沿空巷道冲击地压防治研究[J].岩石力学与工程学报,2016,35(S1):3000-3007. CHENG Yunhai, JIANG Fuxing, HU Zhaofeng , et al. Prevention and control of coal burst on gob-side entry in deep coal seam with fully mechanized sublevelcaving mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1): 3000-3007.
[18] 窦林名,陆菜平,牟宗龙,等.组合煤岩冲击倾向性特性试验研究[J].采矿与安全工程学报,2006,23(1):43-46. DOU Linming, LU Caiping, MU Zonglong. Rock burst tendency of coal-rock combinations sample[J]. Journal of Mining & Safety Engineering, 2006, 23(1):43-46.
[19] 宫凤强,赵英杰,王云亮,等.煤的冲击倾向性研究进展及冲击地压“人-煤-环”三要素机理[J].煤炭学报,2022,47(5):1974-2010. GONG Fengqiang, ZHAO Yingjie, WANG Yunliang, et al. Research progress of coal bursting liability indices and coal burst “Human-Coal-Environment” three elements mechanism[J]. Journal of China Coal Society, 2022, 47(5): 1974-2010.
[20] 刘金海,曹允钦,魏振全,等.深井厚煤层采空区迎采动隔离煤柱合理宽度研究[J].岩石力学与工程学报,2015,34(S2):4269-4277. LIU Jinhai, CAO Yunqin, WEI Zhenquan, et al. Research on reasonable width of partition pillar close to goaf heading mining in thick seam of deep shaft[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 4269-4277.
[21] 李康,陈建强,赵志鹏,等.临空巷道冲击地压耦合致灾因素及时空演化过程研究[J].煤炭科学技术,2019,47(12):76-82. LI Kang, CHEN Jianqiang, ZHAO Zhipeng, et al. Study on disaster-causing factors and evolution process of rock burst in roadway near gob[J]. Coal Science and Technology, 2019, 47(12): 76-82.
[22] 孙刘伟,秦子晗,韩凉.上覆遗留煤柱区冲击地压综合防控技术[J].煤矿安全,2019,50(7):201-204. SUN Liuwei, QIN Zihan, HAN Liang. Comprehensive prevention technology of rock burst in overlying retained coal pillar area[J]. Safety in Coal Mines, 2019, 50(7): 201-204.
计量
- 文章访问数: 40
- HTML全文浏览量: 5
- PDF下载量: 29