水力冲孔孔洞形态特征及瓦斯抽采参数优化
Morphological characteristics of hydraulic punching holes and optimization of gas extraction parameters
-
摘要: 目前,钻孔设计及评价时,多将水力冲孔孔洞形态等效为圆柱体,并以此作为确定有效抽采半径的重要依据之一。而孔洞形态受多因素的共同作用,故将其等效为圆柱体的科学性有待商榷。采用煤岩散体重力、摩擦力、水作用力、地应力等因素,引入并联立Bergmark-Roos方程与PKN模型,建立了描述孔洞形态的BR-PKN方程,并采用MATLAB再现了孔洞形态;为验证其准确性,在现场利用YZD18.5测井仪进行数据采集及分析,展绘了孔洞断面;利用COMSOL对等效类椭球体孔洞与圆柱体孔洞进行了模拟。结果表明:MATLAB展绘的孔洞形态为三轴均不相同的类椭球体;绘制的孔洞形态与MATLAB中的基本一致;类椭球体孔洞与圆柱体孔洞相比抽采半径、解吸表面积、有效抽采体积依次为93%、80%、117%,为钻孔布置提供了依据。Abstract: At present, in drilling design and evaluation, the shape of hydraulic flushing hole is usually equivalent to cylinder, which is one of the important bases to determine the effective extraction radius. However, the shape of hole is subject to the joint action of many factors, so the scientific nature of the equivalent shape to cylinder remains to be discussed. By adopting the factors of gravity, friction, water force and in-situ stress of coal and rock mass, and introducing the parallel Bergmark-Roos equation and PKN model, the BR-PKN equation describing the pore shape is established, and the pore shape is reconstructed by MATLAB. In order to verify its accuracy, data are collected and analyzed by using YZD18.5 logging tool in the field, and the hole section is drawn. The equivalent ellipsoidal and cylindrical holes are simulated by COMSOL. The results show that the shape of the holes drawn by MATLAB is ellipsoid with different three axes. The shape of the drawn hole is basically consistent with that in MATLAB. Compared with cylindrical holes, the extraction radius, desorption surface area and effective extraction volume of quasi-ellipsoid holes are 93%, 80% and 117% respectively, which provides a basis for drilling layout.
-
Keywords:
- hydraulic flushing /
- hole shape /
- hole parameter /
- pressure relief range /
- borehole layout
-
-
[1] 袁亮,林柏泉,杨威.我国煤矿水力化技术瓦斯治理研究进展及发展方向[J].煤炭科学技术,2015,43(1):45-49. YUAN Liang, LIN Baiquan, YANG Wei. Research progress and development direction of gas control with mine hydraulic technology in China coal mine[J]. Coal Science And Technology, 2015, 43(1): 45-49.
[2] 温世平.水力冲孔孔洞瓦斯造成掘进工作面瓦斯超限的原因及控制措施[J].煤矿安全,2015,46(8):171-173. WEN Shiping. Gas overrun reasons of heading face resulting from hole gas of hydraulic punching and control measures[J]. Safety in Coal Mines, 2015, 46(8): 171-173.
[3] 郑仰峰,翟成,辛海会,等.煤巷掘进工作面强弱耦合能量控制防治煤与瓦斯突出理论与方法[J].采矿与安全工程学报,2021,38(6):1269-1280. ZHENG Yangfeng, ZHAI Cheng, XIN Haihui, et al. Theories and methods of coal and gas outburst prevention by strong-weak coupling energy control in coal roadway driving face[J]. Journal of Mining & Safety Engineering, 2021, 38(6): 1269-1280.
[4] 鲁义,申宏敏,秦波涛,等.顺层钻孔瓦斯抽采半径及布孔间距研究[J].采矿与安全工程学报,2015,32(1):156-162. LU Yi, SHEN Hongmin, QIN Botao, et al. Gas drainage radius and borehole distance along seam[J]. Journal of Mining & Safety Engineering, 2015, 32(1): 156-162.
[5] 李润芝,梁冰,孙维吉,等.顺层钻孔瓦斯抽采半径及布孔间距试验研究[J].中国安全科学学报,2016,26(10):133-138. LI Runzhi, LIANG Bing, SUN Weiji, et al. Experimental study on both gas drainage radius and bedding borehole space[J]. China Safety Science Journal, 2016, 26(10): 133-138.
[6] 王峰,陶云奇,冀凯.水力冲孔钻孔有效抽采半径的测试研究[J].矿业安全与环保,2017,44(6):49-53. WANG Feng, TAO Yunqi, JI Kai. Test study on effective extraction radius of hydraulic flushing holes[J]. Mining Safety & Environmental Protection, 2017, 44(6): 49-53.
[7] 陶云奇,张超林,许江,等.水力冲孔卸压增透物理模拟试验及效果评价[J].重庆大学学报(自然科学版),2018,41(10):69-77. TAO Yunqi, ZHANG Chaolin, XU Jiang, et al. Effect evaluation on pressure relief and permeability improvement of hydraulic flushing physical experiment[J]. Journal of Chongqing University(Natural Science Edition), 2018, 41(10): 69-77.
[8] 王恩元,汪皓,刘晓斐,等.水力冲孔孔洞周围煤体地应力和瓦斯时空演化规律[J].煤炭科学技术,2020, 48(1):39-45. WANG Enyuan, WANG Hao, LIU Xiaofei, et al. Spatio temporal evolution of geostress and gas field around hydraulic punching borehole in coal seam[J]. Coal Science and Technology, 2020, 48(1): 39-45.
[9] 刘晓,张帆,马耕.水力冲孔对煤储层渗透率演化规律影响研究[J].煤炭科学技术,2018,46(11):76-81. LIU Xiao, ZHANG Fan, MA Geng. Study on influence of hydraulic flushed borehole on evolution law of coal reservoir permeability[J]. Coal Science and Technology, 2018, 46(11): 76-81.
[10] 马耕,刘晓,李锋.基于放矿理论的软煤水力冲孔孔洞形态特征研究[J].煤炭科学技术,2016,44(11):73-77. MA Geng, LIU Xiao, LI Feng. Study on morphology features of hydraulic flushing hole based on ore drawing theory[J]. Coal Science and Technology, 2016, 44(11): 73-77.
[11] 陶干强,杨仕教,刘振东,等.基于Bergmark-Roos方程的松散矿岩放矿理论研究[J].煤炭学报,2010,35(5):750-754. TAO Ganqiang, YANG Shijiao, LIU Zhendong, et al. Research of ore drawing method of broken ore and rock based on Bergmark-Roos equation[J]. Journal of China Coal Society, 2010, 35(5): 750-754.
[12] MELO F, VIVANCO F, FUENTES C, et al. On drawbody shapes: From Bergmark Roos to kinematic models[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(1): 77-86. [13] 张美玲,张天宇,樊家屹.基于PKN模型的压裂裂缝延展参数计算及分析[J].科学技术与工程,2019,19(5):116-123. ZHANG Meiling, ZHANG Tianyu, FAN Jiayi. Calculation and analysis of fracture extension parameters based on PKN model[J]. Science Technology and Engineering, 2019, 19(5): 116-123.
计量
- 文章访问数: 69
- HTML全文浏览量: 5
- PDF下载量: 47