• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

基于智能巡检机器人的煤机故障音频识别方法

廖志伟, 赵红菊, 崔明明

廖志伟, 赵红菊, 崔明明. 基于智能巡检机器人的煤机故障音频识别方法[J]. 煤矿安全, 2023, 54(3): 221-225.
引用本文: 廖志伟, 赵红菊, 崔明明. 基于智能巡检机器人的煤机故障音频识别方法[J]. 煤矿安全, 2023, 54(3): 221-225.
LIAO Zhiwei, ZHAO Hongju, CUI Mingming. Audio recognition method of coal machine fault based on intelligent inspection robot[J]. Safety in Coal Mines, 2023, 54(3): 221-225.
Citation: LIAO Zhiwei, ZHAO Hongju, CUI Mingming. Audio recognition method of coal machine fault based on intelligent inspection robot[J]. Safety in Coal Mines, 2023, 54(3): 221-225.

基于智能巡检机器人的煤机故障音频识别方法

Audio recognition method of coal machine fault based on intelligent inspection robot

  • 摘要: 随着机器人技术飞速发展以及煤矿安全高效生产更高要求的提出,井下机电设备已经由传统的人工巡检转向具备“监测、检测、预警”功能的机器人化巡检。将声音处理和深度学习引入矿业系统智能处理中,对数据进行智能化分析;研究了声音预处理、语谱图生成和特征提取与分类等各个环节关键技术,解决了现阶段面向煤矿井下环境的关于语音特征无法时域和频域同时描述、缺乏动态序列信息的有效利用等问题。实验数据表明:采用以CNN+LSTM模型为核心,利用caffe c++深度学习框架建立声音识别的CNN+LSTM+Softmax网络,可以有效提高煤矿井下设备异常声音识别准确性和鲁棒性,减小算法复杂度以适应算法在嵌入式设备运行,实现机器人化煤机故障音频辨识及诊断。
    Abstract: With the rapid development of robot technology and the higher requirements of safe and efficient production in coal mine, underground mechanical and electrical equipment has changed from the traditional manual inspection to the robot inspection with the function of “monitoring, detection and early warning”. In this paper, sound processing and deep learning are introduced into the intelligent processing of mining system to analyze the data intelligently. The key technologies of voice preprocessing, spectrogram generation, feature extraction and classification are studied, which solve the problems that the speech features can not be described simultaneously in time domain and frequency domain, and lack of effective use of dynamic sequence information. The experimental data show that the CNN + LSTM + Softmax network based on CNN + LSTM model and caffe C + + deep learning framework can effectively improve the accuracy and robustness of abnormal sound recognition of coal mine equipment, reduce the complexity of the algorithm to adapt to the operation of the algorithm in embedded equipment, and realize the fault audio identification and diagnosis of robotic coal machine.
  • [1] 王国法,王虹,任怀伟,等.智慧煤矿2025情景目标和发展路径[J].煤炭学报,2018,43(2):295-305.

    WANG Guofa, WANG Hong, REN Huaiwei, et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society, 2018, 43(2): 295-305.

    [2] 李梅,杨帅伟,孙振明,等.智慧矿山框架与发展前景研究[J].煤炭科学技术,2017,45(1):121-128.

    LI Mei, YANG Shuaiwei, SUN Zhenming, et al. Study on framework and development prospects of intelligent mine[J]. Coal Science and Technology, 2017, 45(1): 121-128.

    [3] 赵男男.我国人工智能领域发展动态与趋势研究[J].成都工业学院学报,2021,24(1):41-46.

    ZHAO Nannan. Research on development trends in the field of artificial intelligence in China[J]. Journal of Chengdu Technological University, 2021, 24(1): 41-46.

    [4] 鱼昆,张绍阳,侯佳正,等.语音识别及端到端技术现状及展望[J].计算机系统应用,2021,30(3):14-23.

    YU Kun, ZHANG Shaoyang, HOU Jiazheng, et al. Survey of speech recognition and end-to-end techniques[J]. Computer Systems & Applications, 2021, 30(3): 14-23.

    [5] 孙继平,余星辰.基于声音识别的煤矿重特大事故报警方法研究[J].工矿自动化,2021,47(2):1-5.

    SUN Jiping, YU Xingchen. Research on alarm method of coal mine extraordinary accidents based on sound recognition[J]. Industry and Mine Automation, 2021, 47(2):1-5.

    [6] 杨小彬,周世禄,李娜,等.深度学习及其在煤矿安全领域的应用[J].煤矿安全,2019,50(1):253-256.

    YANG Xiaobin, ZHOU Shilu, LI Na, et al. Deep learnng and its application in coal mine safety[J]. Safety in Coal Mines, 2019, 50(1): 253-256.

    [7] WINURSITO A, HIDAYAT R, BEJO A. Improvement of MFCC feature extraction accuracy using PCA in Indonesian speech recognition[C]//2018 International Conference on Information and Communications Technology(ICOIACT). IEEE, 2018: 379-383.
    [8] REKHA S N, JEYANTHY P A, DEVARAJ D. Wavelet transform based open circuit fault diagnosis in the converter used in wind energy systems[C]//2017 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing(INCOS). IEEE, 2017. DOI: 10.1109/ITCOSP.2017.8303152
    [9] 刘思思,谭建平,易子馗.基于MFCC和SVM的车窗电机异常噪声辨识方法研究[J].振动与冲击,2017(5):102-107.

    LIU Sisi, TAN Jianping, YI Zikui. A window motor abnormal noiseidentification method based on MFCC and SVM[J]. Journal of Vibration and Shock, 2017(5): 102-107.

    [10] WANG Z, ZHANG Q, XIONG J, et al. Fault Diagnosis of a Rolling Bearing Using Wavelet Packet Denoising and Random Forests[J]. IEEE Sensors Journal, 2017, 17(17): 5581-5588.
    [11] 陈庆文,韩景立.基于小波包分析和SVM的透平机振动故障诊断研究[J].自动化与仪表,2018,33(2):54-58.

    CHEN Qingwen, HAN Jingli. Turbine vibration fault diagnosis research based on wavelet packet analysis and SVM[J]. Automation & Instrumentation, 2018, 33(2): 54-58.

计量
  • 文章访问数:  45
  • HTML全文浏览量:  3
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 发布日期:  2023-03-19

目录

    /

    返回文章
    返回