• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

热害矿井巷道围岩冷水截流降温技术

张健, 蔡茂林, 张鹏妍, 许博, 季德阁

张健, 蔡茂林, 张鹏妍, 许博, 季德阁. 热害矿井巷道围岩冷水截流降温技术[J]. 煤矿安全, 2023, 54(3): 1-8.
引用本文: 张健, 蔡茂林, 张鹏妍, 许博, 季德阁. 热害矿井巷道围岩冷水截流降温技术[J]. 煤矿安全, 2023, 54(3): 1-8.
ZHANG Jian, CAI Maolin, ZHANG Pengyan, XU Bo, JI Dege. Cold water interception cooling technology for surrounding rock of heat-damaged mine[J]. Safety in Coal Mines, 2023, 54(3): 1-8.
Citation: ZHANG Jian, CAI Maolin, ZHANG Pengyan, XU Bo, JI Dege. Cold water interception cooling technology for surrounding rock of heat-damaged mine[J]. Safety in Coal Mines, 2023, 54(3): 1-8.

热害矿井巷道围岩冷水截流降温技术

Cold water interception cooling technology for surrounding rock of heat-damaged mine

  • 摘要: 为了缓解矿井热害问题,提出了向巷道围岩中置入冷水管,通过冷水管截流高温的方法来降低围岩温度。根据相似性原理搭建了高温围岩冷水截流降温实验系统,改变冷水流速、通入时长和围岩温度等进行实验;结合COMSOL模拟分析了冷水管不同管径、不同间距布局对巷道围岩冷水截流降温效果的影响。结果表明:其他条件不变时,围岩降温幅度随着冷水流速,通入时长以及围岩与冷水的温差的增大而增大;模拟实际巷道围岩冷水截流降温,在冷水管管径为10 cm,竖直方向间距为2.5 m时,降温后巷道壁面的平均温度为23.4 ℃。
    Abstract: In order to alleviate the problem of mine thermal damage, this paper proposes to put cold water pipe into the surrounding rock of roadway, and reduce the temperature of surrounding rock by intercepting the high temperature through the cold water pipe. According to the similarity principle, a cold water interception and cooling experimental system for high temperature surrounding rock was built. Experiments were conducted by changing cold water velocity, inlet time and surrounding rock temperature, etc. Combined with COMSOL simulation, the influence of different diameters and spacing layouts of cold water pipe on cold water interception and cooling effect of roadway surrounding rock was analyzed. The results show that when other conditions remain unchanged, the cooling range of surrounding rock increases with the increase of cold water velocity, inlet time and temperature difference between surrounding rock and cold water. When the diameter of the cold water pipe is 10 cm and the vertical distance is 2.5 m, the average temperature of the roadway wall after cooling is 23.4 ℃.
  • [1] 袁亮.煤炭精准开采科学构想[J].煤炭学报,2017,42(1):1-7.

    YUAN Liang. Scientific conception of precision coal mining[J]. Journal of China Coal Society, 2017, 42(1): 1-7.

    [2] 王海宁.中国煤炭资源分布特征及其基础性作用新思考[J].中国煤炭地质,2018,30(7):5-9.

    WANG Haining. New perspectives on coal resources distribution pattern and its fundamental function in China[J]. Coal Geology of China, 2018, 30(7): 5-9.

    [3] 马威.西庞煤矿复采工作面采空区浮煤自燃规律及防治技术研究[D].西安:西安科技大学,2010.
    [4] 樊东方.对目前我国煤炭能源低碳发展的思考分析[J].煤矿现代化,2018,5(1):123-124.

    FAN Dongfang. Analysis on the low carbon development of coal resources in China[J]. Coal Mine Modernization, 2018, 5(1): 123-124.

    [5] 王斌.我国煤炭能源困境分析及建议[J].中国矿业,2014,23(5):6-8.

    WANG Bin. Problems analysis and suggestions of coal energy development in China[J]. China Mining Magazine, 2014, 23(5): 6-8.

    [6] 辛嵩,付会龙,闫显运.井下集中式降温系统设计新思路[J].煤矿安全,2012,43(3);60-63.

    XIN Song, FU Huilong, YAN Xianyun. New designing idea of centralized cooling system for coal mine[J]. Safety in Coal Mines, 2012, 43(3): 60-63.

    [7] 李国富,夏永怀,李珠.深井巷道隔热降温技术的研究与应用[J].金属矿山,2010,44(9):152-154.

    LI Guofu, XIA Yonghuai, LI Zhu. Research and application of insulating and cooling technology in deep mine roadway[J]. Metal Mine, 2010, 44(9): 152-154.

    [8] 邹声华,李孔清,张登春,等.掘进巷道隔热分流排热降温技术的理论与实践研究[J].安全与环境学报,2016,16(2):99-102.

    ZOU Shenghua, LI Kongqing, ZHANG Dengchun et al. On the air-partition for cooling with the heat-insulated plate[J]. Journal of Safety and Environment, 2016, 16(2): 99-102.

    [9] 刘立民,张进鹏.治理矿井热害的复合隔热材料及其应用[J].山东科技大学学报(自然科学版),2017,36(1):46-53.

    LIU Limin, ZHANG Jinpeng. Thermal insulation composite material for governance of underground thermal hazard and its application[J]. Journal of Shandong University of Science and Technology(Natural Science), 2017, 36(1): 46-53.

    [10] LU Yi, SHI Shiliang, WANG Haiqiao, et al. Thermal characteristics of cement microparticle-stabilized aqueous foam for sealing high-temperature mining fractures[J]. International Journal of Heat and Mass Transfer, 2019, 131(3): 594-603.
    [11] 王春耀,周建,简俊常,等.高温热害矿井通风制冷降温技术[J].煤矿安全,2022,53(9):244-250.

    WANG Chunyao, ZHOU Jian, JIAN Junchang, et al. Ventilation refrigeration and cooling technology of high temperature heat damaged mine[J]. Safety in Coal Mines, 2022, 53(9): 244-250.

    [12] 辛嵩,高浩政,王连涛,等.采空区低温蓄水降温技术[J].煤矿安全,2016,47(8):82-85.

    XIN Song, GAO Haozheng, WANG Liantao, et al. Cooling technology of water storage at low temperature in gob area[J]. Safety in Coal Mines, 2016, 47(8): 82-85.

    [13] 李珠,祝国强.深井巷道降温的一项新技术[J].山西焦煤科技,2011,35(10):42-45.

    LI Zhu, ZHU Guoqiang. A new technology of deep mine roadway cooling[J]. Shanxi Coking Coal Science & Technology, 2011, 35(10): 42-45.

    [14] 常剑.高温巷道围岩调热圈温度场及隔热支护结构调热降温机制[D].阜新:辽宁工程技术大学,2019.
    [15] 孙学阳,李鹏强,付恒心,等.特厚煤层导水裂隙带发育高度的模拟实验[J].煤炭技术,2018,37(6):143-144.

    SUN Xueyang, LI Pengqiang, FU Hengxin et al. Simulation experiment on development height of water fractured zone in extra thick coal seam[J]. Coal Technology, 2018, 37(6): 143-144.

  • 期刊类型引用(2)

    1. 程东旭,段进超,李华华. 超深井矿山井下降温技术研究. 黄金. 2024(08): 40-45 . 百度学术
    2. 季朝阳,陈修杰,冯千,掌奕然,苗德俊. 长距离采煤工作面高压喷雾降温实验研究及应用. 煤矿安全. 2024(10): 72-81 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  54
  • HTML全文浏览量:  1
  • PDF下载量:  45
  • 被引次数: 3
出版历程
  • 发布日期:  2023-03-19

目录

    /

    返回文章
    返回