• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

基于位移反分析法的沿空留巷巷道矿压分布规律

唐建新, 王 潇, 袁 芳, 孔令锐, 李 伟, 李 霜, 鲁思佳, 林 圆

唐建新, 王 潇, 袁 芳, 孔令锐, 李 伟, 李 霜, 鲁思佳, 林 圆. 基于位移反分析法的沿空留巷巷道矿压分布规律[J]. 煤矿安全, 2023, 54(2): 128-134.
引用本文: 唐建新, 王 潇, 袁 芳, 孔令锐, 李 伟, 李 霜, 鲁思佳, 林 圆. 基于位移反分析法的沿空留巷巷道矿压分布规律[J]. 煤矿安全, 2023, 54(2): 128-134.
TANG Jianxin, WANG Xiao, YUAN Fang, KONG Lingrui, LI Wei, LI Shuang, LU Sijia, LIN Yuan. Rock pressure distribution law of roadway based on displacement back analysis method[J]. Safety in Coal Mines, 2023, 54(2): 128-134.
Citation: TANG Jianxin, WANG Xiao, YUAN Fang, KONG Lingrui, LI Wei, LI Shuang, LU Sijia, LIN Yuan. Rock pressure distribution law of roadway based on displacement back analysis method[J]. Safety in Coal Mines, 2023, 54(2): 128-134.

基于位移反分析法的沿空留巷巷道矿压分布规律

Rock pressure distribution law of roadway based on displacement back analysis method

  • 摘要: 以川煤集团叙永一矿沿空留巷为工程背景,采用位移反分析法校准了室内煤岩物理力学参数测试结果,并采用数值模拟方法分析了沿空留巷巷道矿压分布规律。现场观测结果显示:工作面回采期间,巷道顶底板最大相对移近量743 mm,巷道顶底板移近方式以顶板下沉为主,平均顶板下沉量为底鼓量的3.6倍,数值模拟结果为3.5倍。参数校准结果表明:弹性模量、黏聚力的折减对顶底板的移近量有显著影响;计算时步相同时,顶底板移近量随弹性模量、黏聚力的减小而增大,当弹性模量降低为20%时,巷道顶底板移近量最大值增加800 mm。数值模拟分析结果表明:采煤工作面后方沿空留巷高帮支承压力显著升高,支承压力分布呈两侧低,中间高的“凸”起状,且随着工作面不断推进,支承压力峰值不断增大;工作面平均超前支承压力影响范围为77 m。
    Abstract: Taking gob-side entry retaining in Sichuan Coal Group Xuyong No.1 mine as an engineering background, the displacement inverse analysis method is used to calibrate the physical and mechanical parameters test results of coal and rock, and the numerical simulation method is used to analyze the mine pressure distribution law of gob-side entry retaining roadway. Field observation shows that during the working face mining, the maximum relative displacement of roadway roof and floor is 743 mm. Roof subsidence is the main displacement mode of roadway roof and floor. The average roof subsidence is 3.6 times of floor heave, and the numerical simulation result is 3.5 times. The parameter calibration results show that the reduction of elastic modulus and cohesion has a significant impact on the roof and floor approach. At the same calculation step, the roof and floor approach increases with the decrease of elastic modulus and cohesion. When the elastic modulus is reduced to 20%, the maximum value of roof and floor approach increases to 800 mm. The numerical simulation results show that the abutment pressure at the high wall of gob-side entry retaining roadway at the rear of mining face increases significantly, and the abutment pressure distribution is low on both sides and “convex” with the middle height, and the peak value of abutment pressure increases with the advance of working face. The influence range of the average leading abutment pressure of the working face is 77 m.
  • [1] 聂百胜,马延崑,何学秋,等.煤与瓦斯突出微观机理探索研究[J].中国矿业大学学报,2022,51(2):207-220.

    NIE Baisheng, MA Yankun, HE Xueqiu, et al. Micro-scale mechanism of coal and gas outburst: A preliminary study[J]. Journal of China University of Mining & Technology, 2022, 51(2): 207-220.

    [2] 丁洋,宜艳,林海飞,等.高强开采综放工作面瓦斯浓度空间分布规律研究[J].采矿与安全工程学报,2022,39(1):206-214.

    DING Yang, YI Yan, LIN Haifei, et al. Spatial distribution law of gas concentration in the fully mechanized caving face of high intensity mining[J]. Journal of Mining & Safety Engineering, 2022, 39(1): 206-214.

    [3] 康红普,牛多龙,张镇,等.深部沿空留巷围岩变形特征与支护技术[J].岩石力学与工程学报,2010,29(10):1977-1987.

    KANG Hongpu, NIU Duolong, ZHANG Zhen, et al. Deformation characteristics of surrounding rock and supporting technology of gob-side entry retaining in deep coal mine[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(10): 1977-1987.

    [4] 于光远,王炯,孙晗,等.砌块充填沿空留巷底鼓大变形机理及综合控制技术[J].采矿与安全工程学报,2022(2):335-346.

    YU Guangyuan, WANG Jiong, SUN Han, et al. Mechanism and comprehensive control techniques for large deformation of floor heave in block filling gob-side entry retaining[J]. Journal of Mining & Safety Engineering, 2022(2): 335-346.

    [5] 张文章.切顶沿空留巷关键参数及技术应用研究[D].徐州:中国矿业大学,2021.
    [6] 何满潮,陈上元,郭志飚,等.切顶卸压沿空留巷围岩结构控制及其工程应用[J].中国矿业大学学报, 2017, 46(5)959-969.

    HE Manchao, CHEN Shangyuan, GUO Zhibiao, et al. Control of surrounding rock structure for gob-side entry retaining by cutting roof to release pressure and its engineering application[J]. Journal of China University of Mining & Technology, 2017, 46(5): 959-969.

    [7] 郭海武.井下切顶卸压沿空留巷技术探究[J].能源与节能,2021(11):44-45.

    GUO Haiwu. Study on technology of underground gob side entry retaining by roof cutting and pressure relieving[J]. Energy and Energy Conservation, 2021(11): 44-45.

    [8] 王永秀,毛德兵,齐庆新.数值模拟中煤岩层物理力学参数确定的研究[J].煤炭学报,2003(6):593-597.

    WANG Yongxiu, MAO Debing, QI Qingxin. Study on determining of the mechanical parameters of rock mass used in numerical simulation[J]. Journal of China Coal Society, 2003(6): 593-597.

    [9] 孙钧,黄伟.岩石力学参数弹塑性反演问题的优化方法[J].岩石力学与工程学报,1992(3):221-229.

    SUN Jun, HUANG Wei. An optimization method for the elastoplastic inversion of parameters in rock mechanics[J]. Chinese Journal of Rock Mechanics and Engineering, 1992(3):221-229.

    [10] 蒋中明,徐卫亚,邵建富.基于人工神经网络的初始地应力场三维反分析[J].河海大学学报(自然科学版),2002(3):52-56.

    JIANG Zhongming, XU Weiya, SHAO Jianfu. ANN-based 3-D back analysis of initial stress in rock masses[J]. Journal of Hohai University(Natural Sciences), 2002(3): 52-56.

    [11] 赵同彬,谭云亮,刘传孝.基于遗传算法的巷道位移反分析研究[J].岩土力学,2004(S1):107-109.

    ZHAO Tongbin, TAN Yunliang, LIU Chuanxiao. Research on back-analysis of roadway displacement based on genetic algorithms[J]. Rock and Soil Mechanics, 2004(S1): 107-109.

    [12] 戚玉亮,王同旭,张振宇,等.神经网络方法在位移反分析中的应用研究[J].采矿与安全工程学报,2007(1):92-95.

    JI Yuliang, WANG Tongxu, ZHANG Zhenyu, et al. Application study of the neural network approach in back analysis of displacements[J]. Journal of Mining & Safety Engineering, 2007(1): 92-95.

    [13] 叶斯俊.基于反演理论的巷道变形预测[D].徐州:中国矿业大学,2014.
    [14] 任猛,王如江,陈翠刚,等.岩石与岩体性质的相关性研究[J].矿业研究与开发,2021,41(2):100-103.

    REN Meng, WANG Rujiang, CHEN Cuigang, et al. Study on the correlation between rock properties and rock mass properties[J]. Mining Research and Development, 2021, 41(2): 100-103.

    [15] AN J, KANG K, CHOI J, et al. Tunnel Back Analysis Based on Differential Evolution Using Stress and Displacement[J]. Advances in Civil Engineering, 2020(5): 1-10.
    [16] ZHANG Y, SU G, LIU B, et al. A novel displacement back analysis method considering the displacement loss for underground rock mass engineering[J]. Tunnelling and Underground Space Technology, 2020, 95: 103141.
    [17] BIENIAWSKI Z T. Determining rock mass deformability-experience from case histories[J]. International Journal of Rock Mechanics and Mining Sciences, 1978, 15(5): 237-247.
    [18] MOHAMMAD N, REDDISH D J, STACE L R. The relation between in situ and laboratory rock properties used in numerical modeling[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(2): 289-297.
    [19] 侯公羽,梁金平,李小瑞.常规条件下巷道支护设计的原理与方法研究[J].岩石力学与工程学报,2022(4):691-711.

    HOU Gongyu, LIANG Jinping, LI Xiaorui, Research on principles and methods of roadway support design under conventional conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2022(4): 691-711.

  • 期刊类型引用(3)

    1. 李明. 沿空留巷“内支-外卸”围岩控制技术研究与应用. 煤炭工程. 2024(03): 102-109 . 百度学术
    2. 张婷华. 近距离孤岛工作面沿空留巷偏应力分布规律及控制. 煤炭技术. 2024(08): 129-132 . 百度学术
    3. 张志增,周林豪,刘晓丽,宋丹青,刘伟建,史砚青,龚凯,葛磊. 基于Kelvin-Voigt模型的黏弹性岩体位移反分析唯一性研究. 中国矿业. 2024(09): 170-178 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  23
  • HTML全文浏览量:  0
  • PDF下载量:  20
  • 被引次数: 5
出版历程
  • 发布日期:  2023-02-19

目录

    /

    返回文章
    返回