褶曲构造带临空巷道围岩应力演化及冲击地压防治技术
Stress evolution of surrounding rock and rock burst prevention technology of gob-side roadway in folded structural belt
-
摘要: 针对宝积山矿705工作面临空巷道冲击地压事故,通过现场调研、理论分析、数值模拟和现场试验等方法,对褶曲构造带冲击发生机理及防治技术进行了研究。结果表明:1#煤层具有强冲击倾向性,1#煤顶底板岩层具有弱冲击倾向性;随着煤层倾角减小,处于采空区下侧的支承压力增大,处于采空区上侧的支承压力减小,临空巷道实体煤侧在倾角30°时出现“L”形应力集中区;煤层倾角从45°向0°变化时,应力集中程度越来越高;相比于相邻703工作面,705工作面煤层倾角减小,煤层中集中程度更高;褶曲构造带附近应力集中情况增加是引起冲击的内因。提出了大直径钻孔联合高压注水卸压和加强支护协同控制技术,并进行现场应用,电磁辐射监测结果表明卸压及控制效果明显。Abstract: Aiming at the occurrence of rock burst along gob-side roadway in No.705 mining area of Baojishan Coal Mine, the occurrence mechanism of rock burst in folding structure is studied by means of field investigation, theoretical analysis, numerical simulation and field test. The results show that: 1# coal seam has strong impact tendency, and 1# coal roof and floor rock stratum has weak impact tendency. With the decrease of coal seam dip angle, the pressure on the lower side of gob increases, while the pressure on the upper side of gob decreases. The L-shaped stress concentration area appears on the solid coal side of gob at 30°. With the change of coal seam dip angle from 45° to 0°, the stress concentration is higher. Compared with the adjacent 703 working face, the coal seam dip angle of No.705 working face is reduced, and the degree of concentration in the coal seam is higher. Therefore, the increase of stress concentration in the fold structural belt is the internal factor. The technology of large diameter borehole combined with high pressure water injection and pressure relief and strengthening support cooperative control are proposed and applied in the field. The results of electromagnetic radiation monitoring show that the pressure relief and control effect is obvious.
-
Keywords:
- rock burst /
- inclination change /
- gob-side roadway /
- cooperative control /
- electromagnetic radiation
-
-
[1] 窦林名,何学秋.冲击矿压防治理论与技术[M].徐州:中国矿业大学出版社,2001. [2] 潘一山,李忠华,章梦涛.我国冲击地压分布、类型、机理及防治研究[J].岩石力学与工程学报,2003,22(11):1844-1851. PAN Yishan, LI Zhonghua, ZHANG Mengtao, et al. Distribution, type, mechanism and prevention of rockbrust in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1844-1851.
[3] YANG Zengqiang, LIU Chang, TANG Shichuan, et al. Rock burst mechanism analysis in an advanced segment of gob-side entry under different dip angles of the seam and prevention technology[J]. International Journal of Mining Science & Technology, 2018, 28(6): 891-899. [4] YANG Zengqiang, DOU Linming, LIU Chang, et al. Application of high-pressure water jet technology and the theory of rock burst control in roadway[J]. International Journal of Mining Science and Technology, 2016, 26(5): 929-935. [5] 王正义,何江.复杂地质构造区煤岩动力灾害机制与防控研究[J].煤矿安全,2021,52(9):204-210. WANG Zhengyi, HE Jiang. Mechanism of coal-rock dynamic disasters in complex geological structure areas and its prevention[J]. Safety in Coal Mines, 2021, 52(9): 204-210.
[6] 申艳军,吕游,王双明,等.煤矿采动作用对围岩扰动影响范围的分析[J].煤矿安全,2022,53(5):194-202. SHEN Yanjun, LYU You, WANG Shuangming, et al. Analysis of influence range of coal mining on surrounding rock disturbance[J]. Safety in Coal Mines, 2022, 53(5): 194-202.
[7] 孙东飞,尚奇.深井 6.8 m 大采高大断面沿空掘巷窄煤柱宽度及围岩控制研究[J].煤矿安全,2022,53(7):166-173. SUN Dongfei, SHANG Qi. Study on narrow coal pillar width and surrounding rock control of gob-side driving with large mining height and section of 6.8 m in deep coal mine[J]. Safety in Coal Mines, 2022, 53(7):166-173.
[8] 贺虎,窦林名,巩思园,等.巷道防冲机理及支护控制研究[J].采矿与安全工程学报,2010,27(1):40-44. HE Hu, DOU Linming, GONG Siyuan, et al. Mechanism of rockburst prevention and supporting control technology in roadways[J]. Journal of Mining & Safety Engineering, 2010, 27(1): 40-44.
[9] 高明仕.冲击矿压巷道围岩的强弱强结构控制机理研究[D].徐州:中国矿业大学,2006. [10] 李可,张进红,张开智,等.高地应力区域动载扰动诱发深埋巷道冲击致灾机理研究[J].煤矿安全,2017, 48(7):52-56. LI Ke, ZHANG Jinhong, ZHANG Kaizhi, et al. Study on mechanism of deep roadway rock burst induced by dynamic load in high ground stress region[J]. Safety in Coal Mines, 2017, 48(7):52-56.
[11] 刘晓国,魏廷双,余国锋,等.张集煤矿突水危险域微震监测系统应用[J].煤矿安全,2020,51(3):111-114. LIU Xiaoguo, WEI Tingshuang, YU Guofeng, et al. Application of micro-seismic monitoring system in dangerous area of water inrush in Zhangji Coal Mine[J]. Safety in Coal Mines, 2020, 51(3): 111-114.
[12] 康红普,王金华,林建.高预应力强力支护系统及其在深部巷道中的应用[J].煤炭学报,2007,32(12):1233-1238. KANG Hongpu, WANG Jinhua, LIN Jian. High pretensioned stress and intensive bolting system and its application to deep roadways[J]. Journal of China Coal Society, 2007, 32(12): 1233-1238.
[13] 刘畅,杨增强,弓培林,等.工作面过空巷基本顶超前破断压架机理及控制技术研究[J].煤炭学报,2017, 42(8):1932-1940. LIU Chang, YANG Zengqiang, GONG Peilin, et al. Mechanism and control technology of supports crushing induced by main roof’s breaking ahead of workface when crossing abandoned roadway[J]. Journal of China Coal Society, 2017, 42(8): 1932-1940.
[14] 杨增强.复杂地质构造区诱发冲击矿压机理及防控研究[D].北京:中国矿业大学(北京),2018. [15] 潘俊锋,宁宇.煤矿开采冲击地压启动理论[J].岩石力学与工程学报,2012,31(3):586-596. PAN Junfeng, NING Yu. Theory of rockburst start-up during coal mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 586-596.
[16] 赵志鹏,邱海涛,李红平,等.顶板垮断作用下巷道支护体系抗冲击能力研究[J].煤矿安全,2022,53(8):187-193. ZHAO Zhipeng, QIU Haitao, LI Hongping, et al. Impact resistance research of roadway support system under roof collapse[J]. Safety in Coal Mines, 2022, 53(8): 187-193.
-
期刊类型引用(7)
1. 李海江,王晓军,王冰,王东杰,张磊. 特厚煤层褶曲构造区冲击地压主控因素分析及防治研究. 陕西煤炭. 2025(02): 67-72 . 百度学术
2. 韩正灿,石翔元,申银朋,张晓雷,陈海龙,朱广安. 深部地质构造区冲击地压时空监测预警技术. 中国矿业. 2024(01): 147-154 . 百度学术
3. 段云鹏. 褶曲构造影响区内翼部煤层开采矿压机理及防治技术. 煤. 2024(03): 31-35+64 . 百度学术
4. 冯繁. 大采高采煤工作面围岩管理及煤柱留设研究. 内蒙古煤炭经济. 2024(05): 5-8 . 百度学术
5. 潘俊锋,刘少虹,马文涛,高家明,马宏源. 交叉扇形断顶爆破防治临空回采巷道冲击地压技术. 工矿自动化. 2024(12): 11-17 . 百度学术
6. 李同胜. 煤矿采煤生产过程中冲击地压防治技术. 科学技术创新. 2023(19): 189-192 . 百度学术
7. 李士栋,杨增强,周涛,孔震,袁腾飞,周广飞,蔡武. 临近断层构造带不规则工作面开采诱冲机制研究. 煤炭工程. 2023(11): 83-88 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 27
- HTML全文浏览量: 0
- PDF下载量: 28
- 被引次数: 8