高围压条件下含瓦斯水合物煤体强度准则研究
Strength criteria of gas hydrate-containing coal under high confining pressure
-
摘要: 为了探讨Mohr-Coulomb(M-C)准则、Hoek-Brown(H-B)准则以及广义Hoek-Brown(GH-B)准则3种强度准则对高围压条件下含瓦斯水合物煤体的适用性;基于不同饱和度(50%、80%)和不同围压(12、16、20 MPa)条件下,进行常规三轴加载试验,对试验获得的应力-应变曲线进行分析,并利用3种强度准则对最大主应力和围压进行拟合;同时引用均方根偏差RMSE、相关系数等评价指标,探讨不同的强度准则对于含瓦斯水合物煤体的适用性。研究表明:在高围压条件下,应力-应变曲线呈应变硬化型,围压和饱和度越高,峰值强度越高,围压对峰值强度的影响较为显著;M-C准则和GH-B准则对于试验数据拟合的相关系数较高,拟合效果较好,RMSE值较低,预测值与试验值的线性拟合直线与1∶1梯度线非常接近,说明2种准则对含瓦斯水合物煤体的适用性较好;H-B准则的相关系数低于M-C准则和GH-B准则,RMSE值较大,对含瓦斯水合物煤体的适用性略低于M-C准则和GH-B准则。Abstract: The conventional triaxial loading tests were conducted under different saturation(50%, 80%) and confining pressures (12 MPa, 16 MPa, 20 MPa) to explore the applicability of Mohr-Coulomb(M-C) criterion, Hoek-Brown (H-B) criterion as well as Generalized Hoek-Brown(GH-B) criterion to gas hydrate-containing coal under high confining pressure condition. The stress-strain curves were analyzed, and the variation of the main principal stress with the confining pressure was fitted by using the formulas of three strength criteria. Meanwhile, the root mean square deviation RMSE and correlation coefficient were introduced to evaluate the applicability of different strength criteria for gas hydrate-containing coal. The results show that the stress-strain curves exhibit strain hardening characteristics under the condition of high confining pressure. The higher the confining pressure and saturation, the higher the peak strength. The confining pressure has a significant effect on the peak strength. M-C and GH-B criteria are proved to have good fitting effect on the test data, with higher correlation coefficient and lower RMSE value than H-B criterion. The linear fitting line between the predicted value and the test value is very close to the 1∶1 gradient line, indicating that the two criteria have good applicability to gas hydrate-containing coal. The correlation coefficient of H-B criterion is lower than M-C and GH-B criterion. The RMSE value is larger, and the applicability of H-B criterion to gas hydrate-containing coal is slightly lower than M-C criterion and GH-B criterion.
-
-
[1] 何学秋.含瓦斯煤岩流变动力学[M].徐州:中国矿业大学出版社,1995. [2] 程远平,雷杨.构造煤和煤与瓦斯突出关系的研究[J].煤炭学报,2021,46(1):180-198. CHENG Yuanping, LEI Yang. Causality between tectonic coal and coal and gas outbursts[J]. Journal of China Coal Society, 2021, 46(1): 180-198.
[3] WU Qiang, HE Xueqiu. Preventing coal and gas outburst using methane hydration[J]. Journal of China University of Mining & Technology, 2003, 13(1): 7-10. [4] 高霞,刘文新,高橙,等.含瓦斯水合物煤体强度特性三轴试验研究[J].煤炭学报,2015,40(12):2829-2835. GAO Xia, LIU Wenxin, GAO Cheng, et al. Triaxial shear strength of methane hydrate-bearing coal[J]. Journal of China Coal Society, 2015, 40(12): 2829-2835.
[5] 吴强,朱福良,高霞,等.晶体类型对含瓦斯水合物煤体力学性质的影响[J].煤炭学报,2014,39(8):1492-1496. WU Qiang, ZHU Fuliang, GAO Xia, et al. Effect of hydrate crystal type on mechanical properties of gas hydrate-bearing coal[J]. Journal of China Coal Society, 2014, 39(8): 1492-1496.
[6] GAO X, YANG T, YAO K, et al. Mechanical Performance of Methane Hydrate Coal Mixture[J]. Energies, 2018, 11(6): 1562. [7] 郝宪杰,刘继山,魏英楠,等.2 000 m超深煤系储层力学及声发射特征的围压效应[J].中南大学学报(自然科学版),2021,52(8):2611-2621. HAO Xianjie, LIU Jishan, WEI Yingnan, et al. Effects of confining pressure on mechanical responses and acoustic characteristics of coal gas seams deeper than 2 000 m[J]. Journal of Central South University(Science and Technology), 2021, 52(8): 2611-2621.
[8] 尤明庆,苏承东,周英.不同煤块的强度变形特性及强度准则的回归方法[J].岩石力学与工程学报,2003, 22(12):2081-2085. YOU Mingqing, SU Chengdong, ZHOU Ying, et al. Strength and deformation of specimen for different coal blocks and regression method of strength criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(12): 2081-2085.
[9] 张庆贺,李术才,王汉鹏,等.不同强度含瓦斯型煤瞬间揭露致突特征及其影响机制[J].采矿与安全工程学报,2017,34(4):817-824. ZHANG Qinghe, LI Shucai, WANG Hanpeng, et al. Influence mechanism and outburst characteristics during revealing different intensity coal containing gas[J]. Journal of Mining & Safety Engineering, 2017, 34(4): 817-824.
[10] 苏承东,熊祖强,翟新献,等.三轴循环加卸载作用下煤样变形及强度特征分析[J].采矿与安全工程学报,2014,31(3):456-461. SU Chengdong, XIONG Zuqiang, ZHAI Xinxian, et al. Analysis of deformation and strength characteristics of coal samples under the triaxial cyclic loading and unloading stress path[J]. Journal of Mining & Safety Engineering, 2014, 31(3): 456-461.
[11] 左建平,陈岩,张俊文,等.不同围压作用下煤-岩组合体破坏行为及强度特征[J].煤炭学报,2016,41(11):2706-2713. ZUO Jianping, CHEN Yan, ZHANG Junwen, et al. Failure behavior and strength characteristics of coal-rock combined body under different confining pressures[J]. Journal of China Coal Society, 2016, 41(11): 2706-2713.
[12] 赵国彦,戴兵,董陇军,等.不同应力路径下岩石三轴卸荷力学特性与强度准则研究[J].岩土力学,2015, 36(11):3121-3127. ZHAO Guoyan, DAI Bing, DONG Longjun, et al. Experimental research on mechanical characteristics and strength criterion of rock of triaxial unloading tests under different stress paths[J]. Rock and Soil Mechanics, 2015, 36(11): 3121-3127.
[13] 郭建强,杨前冬,卢雪峰,等.岩石(体)破坏广义统一强度理论[J].煤炭学报,2021,46(12):3869-3882. GUO Jianqiang, YANG Qiandong, LU Xuefeng, et al. Research on generalized unified strength theory of rock (mass) failure[J]. Journal of China Coal Society, 2021, 46(12): 3869-3882.
[14] 李斌,王大国.常规三轴压缩条件下的负乘方型岩石强度准则[J].煤田地质与勘探,2020,48(2):152-160. LI Bin, WANG Daguo. Negative power rock strength criterion under conventional triaxial compression[J]. Coal Geology & Exploration, 2020, 48(2): 152-160.
[15] 杨更社,魏尧,申艳军,等.冻结饱和砂岩三轴压缩力学特性及强度预测模型研究[J].岩石力学与工程学报,2019,38(4):683-694. YANG Gengshe, WEI Yao, SHEN Yanjun, et al. Mechanical behavior and strength forecast model of frozen saturated sandstone under triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 683-694.
[16] 尹光志,王登科,张东明,等.两种含瓦斯煤样变形特性与抗压强度的试验分析[J].岩石力学与工程学报,2009,28(2):410-417. YIN Guangzhi, WANG Dengke, ZHANG Dongming, et al. Test analysis of deformation characteristics and compressive strengths of two types of coal specimens containing gas[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(2): 410-417.
[17] 张保勇,于洋,高霞,等.卸围压条件下含瓦斯水合物煤体应力-应变特性试验研究[J].煤炭学报,2021, 46(S1):281-290. ZHANG Baoyong, YU Yang, GAO Xia, et al. Stress-strain characteristics of coal mine gas hydrate-coal mixture under confining pressure unloading[J]. Journal of China Coal Society, 2021, 46(S1): 281-290.
[18] 李斌.高围压条件下岩石破坏特征及强度准则研究[D].武汉:武汉科技大学,2015. [19] HOEK E, KAISER P K, BAWDEN W F. Support of Underground Excavations in Hard Rock[M]. Rotterdam: Balkema, 1995. [20] 刘亚群,李海波,李俊如,等.基于Hoek-Brown准则的板岩强度特征研究[J].岩石力学与工程学报,2009,28(S2):3452-3457. LIU Yaqun, LI Haibo, LI Junru, et al. Study on strength characteristics of slates based on Hoek-Brown criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S2): 3452-3457.
[21] HOEK E, WOOD D, SHAH S. A modified Hoek-Brown criterion for jointed rock mass[C]// Hudson J A. Proceedings of the Rock Characterization, Symposium of ISRM. London: British Geotechnical Society, 1992: 209-214. [22] 岑夺丰,刘超,黄达.砂岩拉剪强度和破裂特征试验研究及数值模拟[J].岩石力学与工程学报,2020,39(7):1333-1342. CEN Duofeng, LIU Chao, HUANG Da. Experimental and numerical study on tensile-shear strength and rupture characteristics of sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(7): 1333-1342.
-
期刊类型引用(1)
1. 高霞,杨书朋,刘飞,张保勇,吴强. 基于饱和度指标的含瓦斯水合物煤体强度预测模型. 黑龙江科技大学学报. 2023(06): 817-823 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 44
- HTML全文浏览量: 0
- PDF下载量: 43
- 被引次数: 1