• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

上覆采空区和含水层叠加富水效应的工作面防治水技术

靳志龙

靳志龙. 上覆采空区和含水层叠加富水效应的工作面防治水技术[J]. 煤矿安全, 2023, 54(1): 198-204.
引用本文: 靳志龙. 上覆采空区和含水层叠加富水效应的工作面防治水技术[J]. 煤矿安全, 2023, 54(1): 198-204.
JIN Zhilong. Research on prevention and control technology of working face with superimposed water-rich effect of overlying goaf and aquifer[J]. Safety in Coal Mines, 2023, 54(1): 198-204.
Citation: JIN Zhilong. Research on prevention and control technology of working face with superimposed water-rich effect of overlying goaf and aquifer[J]. Safety in Coal Mines, 2023, 54(1): 198-204.

上覆采空区和含水层叠加富水效应的工作面防治水技术

Research on prevention and control technology of working face with superimposed water-rich effect of overlying goaf and aquifer

  • 摘要: 针对回采工作面上覆采空区和含水层富水叠加效应威胁工作面安全回采的问题,以典型矿井神东煤炭集团布尔台煤矿为研究对象,综合采用地面地质钻探、钻孔岩心精细编录、地面-井下物探联合探测、井下定向钻探、探采对比等技术,应用理论分析、数值模拟和相似材料模拟等方法与工程实践揭示了布尔台煤矿4-2煤顶板采掘扰动条件下含水层富水叠加致灾机理。根据富水危险区综合探测结果,结合定向钻孔精准的区域治理方法,构建回采工作面定向钻探的水害超前区域精准防治模式,对富水区进行工程治理,累计疏放水量5.28万m3,实现了对典型工作面的安全高效顺利回采,有效控制了矿井4-2煤采掘扰动富水叠加的灾害。
    Abstract: In view of the problem that the overlying goaf and the water-rich superimposed effect of the aquifer threaten the safe mining of the working face, taking Buertai Coal Mine of Shendong Coal Group as the research object, the techniques of surface geological drilling, drilling core fine cataloguing, surface-to-underground geophysical exploration, underground directional drilling, exploration-mining comparison are comprehensively adopted, theoretical analysis, numerical simulation and similar material simulation are used to reveal the mechanism of water-rich superimposed disaster in Buertai Coal Mine under 4-2 coal roof excavation disturbance. According to the comprehensive detection result of water-rich dangerous area and the precise regional treatment method of directional drilling, the accurate prevention and control mode of water disaster in advance of directional drilling of mining face was built, and the water-rich area was treated by engineering. The accumulated water quantity of 52 800 m3 was released, which realized the safe and efficient and smooth recovery of typical working face and effectively controlled the disaster caused by the disturbance and water-rich superposition of coal mining in 4-2 mine.
  • [1] 杨俊哲.8.8 m智能超大采高综采工作面关键技术与装备[J].煤炭科学技术,2019,47(10):116-124.

    YANG Junzhe. Key technologies and equipments for 8.8 m intelligent super large mining height fully-mechanized mining face mining[J]. Coal Science and Technology. 2019, 47(10): 116-124.

    [2] 杨俊哲.7.0 m大采高工作面覆岩破断及矿压显现规律研究[J].煤炭科学技术,2017,45(8):1-7.

    YANG Junzhe. Study on overlying strata breakage and strata behaviors law of 7.0 m mining height working face[J]. Coal Science and Technology. 2017, 45(8): 1-7.

    [3] 张玉军,张华兴,陈佩佩.覆岩及采动岩体裂隙场分布特征的可视化探测[J].煤炭学报,2008,33(11):1216-1219.

    ZHANG Yujun, ZHANG Huaxing, CHEN Peipei. Visual exploration of fissure field of overburden and rock[J]. Journal of China Coal Society, 2008, 33(11): 1216-1219..

    [4] 陈荣华,白海波,冯梅梅.综放面覆岩导水裂隙带高度的确定[J].采矿与安全工程学报,2006,23(2):220-223.

    CHEN Ronghua, BAI Haibo, FENG Meimei. Determination of the height of water flowing fractured zone in overburden strata above fully-mechanized top-coal caving face[J]. Journal of Mining & Safety Engineering, 2006, 23(2): 220-223.

    [5] 高喜才,伍永平.特厚煤层富水覆岩采动裂隙动态分布特征模拟研究[J].煤矿安全,2011,42(3):16-18.

    GAO Xicai, WU Yongping. Experimental study on dynamic distribution law of the spread cracks overlying stratum with rich water in special hard thick seam[J]. Safety in Coal Mines, 2011, 42(3): 16-18.

    [6] 施龙青,韩进.开采煤层底板“四带”划分理论与实践[J].中国矿业大学学报,2005,34(1):16-23.

    SHI Longqing, HAN Jin. Theory and practice of dividing coal mining area floor into four-zone[J]. Journal of China University of Mining & Technology, 2005, 34(1): 16-23.

    [7] 张杰,侯忠杰.固-液耦合试验材料的研究[J].岩石力学与工程学报,2004,23(18):3157-3161.

    ZHANG Jie, HOU Zhongjie. Experimental study on simulation materials for solid-liquid coupling[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(18): 3157-3161.

    [8] 侯忠杰,张杰.陕北矿区开采潜水保护固液两相耦合实验及分析[J].湖南科技大学学报(自然科学版),2004,19(4):1-5.

    HOU Zhongjie, ZHANG Jie. The solid-liquid coupling two-phase experiment and analysis of the protection of potentiona water in northern mining area of shaanxi[J]. Journal of Hunan University of Science & Technology(Natural Science Edition), 2004, 19(4): 1-5.

    [9] 黄庆享,张文忠,侯志成.固液耦合试验隔水层相似材料的研究[J].岩石力学与工程学报,2010,29(S1):2813-2818.

    HUANG Qingxiang, ZHANG Wenzhong, HOU Zhicheng. Study of simulation materials of aquifuge for solid-liquid coupling[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 2813-2818.

    [10] 胡小娟,李文平,曹丁涛,等.综采导水裂隙带多因素影响指标研究与高度预计[J].煤炭学报,2012,37(4):614-620.

    HU Xiaojuan, LI Wenping, CAO Dingtao, et al. Index of multiple factors and expected height of fully mechanized water flowing fractured zone[J]. Journal of China Coal Society, 2012, 37(4): 614-620.

    [11] 王双美.导水裂隙带高度研究方法概述[J].水文地质工程地质,2006,33(5):126-128.

    WANG Shuangmei. A brief review of the methods determining the height of permeable fracture zone[J]. Hydrogeology & Engineering Geology, 2006, 33(5): 126-128.

    [12] 刘振宇.导水裂隙带高度预测途径探讨[J].内蒙古煤炭经济,2001(3):72-73.
    [13] SINGH R, SINGH T N. Investigation into the behaviour of a support system and roof strata during sublevel caving of a thick coal seam[J]. Geotechnical and Geological Engineering, 1999, 17: 21-35.
    [14] XIE G X, CHANG J C, YANG K. Investigations into stress shell characteristics of surrounding rock in fully mechanized top-coal caving face[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(1): 172-181.
    [15] COULTHARD M A. Applications of numerical modelling in underground mining and construction[J]. Geotechnical and Geological Engineering, 1999, 17: 373-385.
    [16] ISLAM M R, HAYASHI D, KAMRUZZAMAN A B M. Finite element modeling of stress distributions and problems for multi-slice longwall mining in Bangladesh, with special reference to the Barapukuria coal mine[J]. International Journal of Coal Geology, 2009, 78(2): 91-109.
    [17] 缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].北京:科学出版社,2004.
    [18] 钱鸣高,缪协兴,许家林,等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003.
    [19] 郑凯歌,孙四清.煤油气共存巷道掘进对底板扰动效应模拟研究[J].煤炭科学技术,2017,45(11):113-118.

    ZHENG Kaige, SUN Siqing. Simulation study on floor disturbance effect induced by coal and oil-gas coexistence roadway heading[J]. Coal Science and Technology, 2017, 45(11): 113-118.

    [20] 袁哲,张一鸣,王旭红,等.多通道瞬变电磁法激励源降噪性能对比研究[J].地球物理学进展,2021, 36(1):425-433.

    YUAN Zhe, ZHANG Yiming, WANG Xuhong, et al. Comparative study on noise reduction performance of MTEM sources[J]. Progress in Geophysics, 2021, 36 (1): 425-433.

    [21] 陈赟,沈建国,张小康.瞬变电磁井间勘探方法研究[J].地球物理学进展,2021,36(1):132-143.

    CHEN Yun, SHEN Jianguo, ZHANG Xiaokang. Research on transient electromagnetic interwell exploration method[J]. Progress in Geophysics, 2021, 36(1):132-143.

    [22] 石琦,刘丽华,倪志康,等.伪随机编码磁性源瞬变电磁发射技术及电磁响应分析[J].中南大学学报(自然科学版),2020,51(5):1268-1278.

    SHI Qi, LIU Lihua, NI Zhikang, et al. Pseudo-random coded magnetic source transient electromagnetic emission technology and electromagnetic response analysis[J]. Journal of Central South University(Science and Technology), 2020, 51(5): 1268-1278.

  • 期刊类型引用(3)

    1. 柴颖. 煤层顶板砂岩水害防控技术研究. 江西煤炭科技. 2025(01): 117-121 . 百度学术
    2. 职志攀,宋凯,汪孝博,宋豪. 基于瞬变电磁法的煤矿地下水源分布及水害探测研究. 能源与环保. 2025(02): 147-152 . 百度学术
    3. 陈冲,李运肖,程宇航,晏磊. 综合物探法在煤层底板灰岩含水性的应用研究. 煤炭技术. 2024(06): 151-155 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  17
  • HTML全文浏览量:  0
  • PDF下载量:  12
  • 被引次数: 3
出版历程
  • 发布日期:  2023-01-19

目录

    /

    返回文章
    返回