基于AHP的脆弱性指数法煤层底板突水预测模型与应用
Mine floor water inrush prediction model and application based on AHP vulnerable index method
-
摘要: 随着煤层开采深度的不断增加,煤矿生产过程中面临复杂的突水机理和多变的突水主控因素,使底板突水预测的难度不断增加。为准确预测底板突水危险性,采用脆弱性指数法求出各子因素的底板突水危险性权重,并利用层次分析法(AHP)划分底板突水危险阈值,从而建立煤层底板突水预测模型。分析整理了河南龙门煤业常村煤矿地质及水文地质资料,从突水水源、突水通道和隔水层3个方面将底板突水影响因素划分为含水层水压、出水量、注浆量、断层相似维、断层倾角、断层走向、断层落差和有效隔水层厚度等8个子因素;将底板突水危险性划分为5个区域:安全区[0.25,0.32)、较安全区[0.32,0.44)、较危险区[0.44,0.56)、危险区[0.56,0.70)、极危险区[0.70,0.85];建立了基于AHP的脆弱性指数法评价模型。与传统的突水系数法相比,基于AHP的脆弱性指数法评价结果具有较好的准确性,且划分更加精细合理,为矿井水害预测预报提供了科学的评价方法和理论依据。Abstract: With the continuous increase of coal seam mining depth, the coal mine production faced with complex water inrush mechanism and changeable main controlling factors, which makes the prediction of floor water inrush more difficult. In order to accurately predict the risk of floor water inrush, the vulnerability index method was used to obtain the risk weight of floor water inrush for each sub-factor, and the analytic hierarchy process(AHP) was used to divide the risk threshold of floor water inrush, so as to establish coal seam floor water inrush prediction model. We analyzed the geological and hydro-geological data of Henan Longmen Coal Industry Changcun Coal Mine from the three aspects of water inrush sources, water inrush channels and aquifers, the influencing factors of floor water inrush are divided into eight factors: aquifer water pressure, water output, grouting volume, fault similarity dimension, fault dip, fault strike, fault drop and effective aquifer thickness. Based on eight sub-factors, the risk of floor water inrush is divided into five areas: safe area [0.25, 0.32), relatively safe area [0.32, 0.44), the more dangerous area [0.44, 0.56), the dangerous area [0.56, 0.70), and the extremely dangerous area [0.70, 0.85]. Finally, the vulnerability index method evaluation model based on AHP was established. Compared with the traditional water inrush coefficient method, the evaluation results of the vulnerability index method based on AHP have better accuracy, and the division is more refined andreasonable, which provides a scientific evaluation method and theoretical basis for the prediction of mine water hazards.
-
-
[1] 武强.我国矿井水防控与资源化利用的研究进展、问题和展望[J].煤炭学报,2014,39(5):795-805. WU Qiang. Progress, problems and prospects of prevention and control technology of mine water and reutilization in China[J]. Journal of China Coal Society, 2014, 39(5): 795-805.
[2] 王皓,董书宁,乔伟,等.矿井水害防控远程服务云平台构建与应用[J].煤田地质与勘探,2021,49(1):208-216. WANG Hao, DONG Shuning, QIAO Wei, et al. Con-struction and application of remote service cloud platform for mine water hazard prevention and control[J]. Coal Geology & Exploration, 2021, 49(1): 208-216.
[3] 靳德武.我国煤矿水害防治技术新进展及其方法论思考[J].煤炭科学技术,2017,45(5):141-147. JIN Dewu. New development of water disaster prevention and control technology in China coal mine and con-sideration on methodology[J]. Coal Science and Te-chnology, 2017, 45(5): 141-147.
[4] 虎维岳,田干.我国煤矿水害类型及其防治对策[J].煤炭科学技术,2010,38(1):92-96. HU Weiyue, TIAN Gan. Mine water disaster type and prevention and control counter measures in China[J]. Coal Science and Technology, 2010, 38(1): 92-96.
[5] 武强,张波,赵文德,等.煤层底板突水评价的新型实用方法Ⅴ: 基于 GIS 的 ANN 型、证据权型、Logistic回归型脆弱性指数法的比较[J].煤炭学报,2013,38(1): 21-26. WU Qiang, ZHANG Bo, ZHAO Wende, et al. A new practical methodology of coal seam floor water burst evaluation: the comparison study among ANN, the weight of evidence and the logistic regression vulnerable index method based on GIS[J]. Journal of China Coal Society, 2013, 38(1): 21-26.
[6] 王甜甜,靳德武,刘基,等.动态权-集对分析模型在矿井突水水源识别中的应用[J].煤炭学报,2019,44(9): 2840-2850. WANG Tiantian, JIN Dewu, LIU Ji, et al. Application of dynamic weight-set pair analysis model in mine water inrush discrimination[J]. Journal of China Coal Society, 2019, 44(9): 2840-2850.
[7] 王心义,姚孟杰,张建国,等.基于改进 AHP 法与模糊可变集理论的煤层底板突水危险性评价[J].采矿与安全工程学报,2019,36(3):558-565. WANG Xinyi, YAO Mengjie, ZHANG Jianguo, et al. Evaluation of water bursting in coal seam floor based on improved AHP and fuzzy variable set theory[J]. Journal of Mining & Safety Engineering, 2019, 36(3): 558-565.
[8] 樊亚红,刘文连,曹福明.改进突水系数法在先锋露天矿底板突水评价中的应用[J].煤炭工程,2016,48(1):114-117. FAN Yahong, LIU Wenlian, CAO Fuming. Application of modified water inrush coefficient method to evaluation of coal floor water inrush of Xianfeng open-pit coal mine[J]. Coal Engineering, 2016, 48(1): 114-117.
[9] 施龙青,曲兴玥,韩进,等.多模型融合评价煤层底板灰岩岩溶突水危险性[J].煤炭学报,2019,44(8): 2484-2493. SHI Longqing, QU Xingyue, HAN Jin, et al. Multi-model fusion for assessing the risk of inrush of limestone karst water through mine floor[J]. Journal of China Coal Society, 2019, 44(8): 2484-2493.
[10] 刘晨雨,魏久传,王杰,等.基于AHP-TFN的底板突水危险性预测[J].中国矿业,2019,28(8):124-129. LIU Chenyu, WEI Jiuchuan, WANG Jie, et al. Prediction of floor water inrush risk based on AHP-TFN model[J]. China Mining Magazine, 2019, 28(8): 124-129.
[11] 胡常清,刘景,谢卫东,等.煤层底板突水危险性分析:以唐山市钱家营矿12煤层底板为例[J].中国矿业,2020,29(7):92-99. HU Changqing, LIU Jing, XIE Weidong, et al. Risk analysis of water inrush from coal seam floor: a case study of No. 12 coal seam floor in Qianjiaying coal mine, Tangshan city[J]. China Mining Magazine, 2020, 29(7): 92-99.
[12] 邱梅,施龙青,滕超,等.赵官井田10煤层底板突水危险性评价[J].煤田地质与勘探,2015,43(3):61 -65. QIU Mei, SHI Longqing, TENG Chao, et al. Evaluation of water inrush risk for No.10 coal seam floor of Zhaoguan mine field[J]. Coal Geology & Exploration, 2015, 43(3): 61-65.
[13] 李云龙.基于多源信息融合的姚桥矿水害防治方法与应用研究[D].北京:中国矿业大学(北京),2010. [14] 邢丽花.基于多因素模糊聚类的底板突水危险性预测研究[D].青岛:山东科技大学,2011. -
期刊类型引用(6)
1. 韩瑞达. 基于GIS与AHP的煤层顶板涌(突)水危险性研究. 地质装备. 2025(01): 25-32 . 百度学术
2. 董绪峰. 承压水上含陷落柱构造煤层底板渗流路径研究. 煤炭科技. 2025(01): 105-109 . 百度学术
3. 魏启明,赵宝峰,马进勇,张泽源,马志贤. 煤层底板砂岩含水层水文地质特征的分布式放水试验探查研究. 中国煤炭. 2024(05): 32-39 . 百度学术
4. 刘艳冬,刘滢,卢兰萍,白峰青,王铁记,卫皓皓. 基于ZOA-CNN-GRU模型的煤层底板突水等级预测. 中国煤炭. 2024(06): 44-51 . 百度学术
5. 杨茹蕙,李小萌,王铁记. 基于IAHP-EWM博弈论的煤层底板突水影响因素研究. 煤炭与化工. 2024(07): 43-47+52 . 百度学术
6. 安律宁,陈继福,董广铭,李玉兵. 基于层次聚类模糊综合评判的矿井突水危险性评价. 煤炭与化工. 2023(10): 49-56 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 21
- HTML全文浏览量: 1
- PDF下载量: 19
- 被引次数: 8