基于三铰斜拱的不同宽度区段煤柱下底板应力变化规律研究
Research on stress variation law of floor under coal pillar with different widths based on three-hinged oblique arch
-
摘要: 为获取上保护层充分采动后,区段煤柱影响下的上覆岩层结构及底板应力传递规律,基于三铰斜拱理论推导了合理拱轴线方程;数值模拟了不同宽度区段煤柱的保护层底板应力分布规律;基于三铰斜拱和弹性力学理论2种方法得到了保护层底板应力分布的解析解,并通过现场实测验证。研究表明:三铰斜拱形态参数与留设煤柱宽度、煤层开采高度、采空区卸压宽度等动态相关;当煤柱宽度大于15 m时,采空区底板重新压实区将产生三铰斜拱结构引起的附加应力,并且应力极值点随煤柱宽度增加而向采空区中心移动。现场试验得出被保护层回采巷道应内错布置,合理错距为10~20 m。Abstract: In order to obtain the overlying strata structure and the stress transfer law of floor under the influence of section coal pillar after the upper protective layer is fully mined, the rational arch axis equation is deduced based on the three-hinged inclined arch theory. The stress distribution of coal pillar floor with different widths is simulated numerically. Based on two methods of three-hinged inclined arch and elastic mechanics theory, the analytic solution of stress distribution of bottom plate of protective layer is obtained and verified by field measurement. The results show that the shape parameters of three-hinged inclined arch are dynamically correlated with the width of retained coal pillar, the mining height of coal seam and the pressure relief width of goaf. When the width of coal pillar is larger than 15 m, the additional stress caused by three-hinged inclined arch structure will occur in the re-compacted area of goaf floor, and the extreme stress point will move to the center of goaf with the increase of coal pillar width. The field test shows that the stoping roadway of protected layer should be arranged in the wrong way, and the reasonable wrong distance is 10-20 m.
-
-
[1] 彭赐灯.矿山压力与岩层控制研究热点最新进展评述[J].中国矿业大学学报,2015,44(1):1-8. PENG Cideng. Topical areas of research needs in ground control: A state of the art review on coal mine ground control[J]. Journal of China University of Mining & Technology, 2015, 44(1): 1-8.
[2] 伍永平,刘孔智,贠东风,等.大倾角煤层安全高效开采技术研究进展[J].煤炭学报,2014,39(8):1611-1618. WU Yongping, LIU Kongzhi, YUN Dongfeng, et al. Research progress on the safe and efficient mining technology of steeply dipping seam[J]. Journal of China Coal Society, 2014, 39(8): 1611-1618.
[3] 黄庆享,赵萌烨,黄克军.浅埋煤层群开采顶板双关键层结构及支护阻力研究[J].中国矿业大学学报,2019,48(1):71-77. HUANG Qingxiang, ZHAO Mengye, HUANG Kejun. Study of roof double key strata structure and support resistance of shallow coal seams group mining[J]. Journal of China University of Mining & Technology, 2019, 48(1): 71-77.
[4] 何满潮,王亚军,杨军,等.切顶成巷工作面矿压分区特征及其影响因素分析[J].中国矿业大学学报,2018,47(6):1157-1165. HE Manchao, WANG Yajun, YANG Jun, et al. Zonal characteristics and its influence factors of working face pressure using roof cutting and pressure-relief mining method with no pillar and roadway formed automaticly[J]. Journal of China University of Mining & Technology, 2018, 47(6): 1157-1165.
[5] 谷拴成,张志飞,杨超凡,等.考虑煤岩体成拱效应的工作面区段煤柱合理尺寸研究[J].中国安全生产科学技术,2021,17(9):77-83. GU Shuancheng, ZHANG Zhifei, YANG Chaofan, et al. Study on reasonable size of coal pillars in working face section considering arching effect of coal and rock mass[J]. China Safety Science and Technology, 2021, 17(9): 77-83.
[6] 文志杰,景所林,宋振骐,等.采场空间结构模型及相关动力灾害控制研究[J].煤炭科学技术,2019,47(1):52-61. WEN Zhijie, JING Suolin, SONG Zhenqi, et al. Study on coal face spatial structure model and control related dynamic disasters[J]. Coal Science and Technology, 2019, 47(1): 52-61.
[7] 于斌,杨敬轩,刘长友,等.大空间采场覆岩结构特征及其矿压作用机理[J].煤炭学报,2019,44(11):3295-3307. YU Bin, YANG Jingxuan, LIU Changyou, et al. Overburden structure and mechanism of rock pressure in large space stope[J]. Journal of China Coal Society, 2019, 44(11): 3295-3307.
[8] 李志华,杨科,华心祝,等.采场覆岩“宏观-大-小”结构及其失稳致灾机理[J].煤炭学报,2020,45(S2):541-550. LI Zhihua, YANG Ke, HUA Xinzhu, et al. Disaster-causing mechanism of instability and “macroscopic-big-small” structures of overlying strata in longwall mining[J]. Journal of China Coal Society, 2020, 45(S2): 541-550.
[9] 冯军发,周英,李回贵,等.试论近水平煤层采场的3种基本结构形式[J].煤炭学报,2016,41(10):2576-2587. FENG Junfa, ZHOU Ying, LI Huigui, et al. Three kinds of basic structures of working face in near horizontal coal seam[J]. Journal of China Coal Society, 2016, 41(10): 2576-2587.
[10] 汪锋,许家林,陈绍杰,等.松散层拱结构模型及其对覆岩运动的影响[J].采矿与安全工程学报,2019,36(3):497-504. WANG Feng, XU Jialin, CHEN Shaojie, et al. Arch structure in unconsolidated layers and its effect on the overlying strata movement[J]. Journal of Mining & Safety Engineering, 2019, 36(3):497-504.
[11] 左建平,孙运江,钱鸣高.厚松散层覆岩移动机理及“类双曲线”模型[J].煤炭学报,2017,42(6):1372-1379. ZUO Jianping, SUN Yunjiang, QIAN Minggao. Movement mechanism and analogous hyperbola model of overlying strata with thick alluvium[J]. Journal of China Coal Society, 2017, 42(6): 1372-1379.
[12] 岳喜占,涂敏,李迎富,等.近距离煤层开采遗留边界煤柱下底板巷道采动附加应力计算[J].采矿与安全工程学报,2021,38(2):246-252. YUE Xizhan, TU Min, LI Yingfu, et al. Calculation of mining-induced additional stress in roadway under the residual coal pillar in close coal seam Mining[J]. Journal of Mining & Safety Engineering, 2021, 38(2): 246-252.
[13] 石占山,梁冰,孙维吉.采空区压实应力调整阶段底板卸压演化规律研究[J].采矿与安全工程学报,2019,36(1):51-58. SHI Zhanshan, LIANG Bing, SUN Weiji. Study on floor pressure-relief evolution characteristics at goaf stress adjustment stage[J]. Journal of Mining & Safety Engineering, 2019, 36(1): 51-58.
[14] 涂敏,林远东,张向阳,等.大空间孤岛采场覆岩结构演化与区段煤柱合理宽度研究[J].采矿与安全工程学报,2021,38(5):857-865. TU Min, LIN Yuandong, ZHANG Xiangyang, et al. Evolution of overburden structure and reasonable width of section coal pillar in large space isolated island stope[J]. Journal of Mining & Safety Engineering, 2021, 38(5): 857-865.
[15] 程详,赵光明,李英明,等.软岩保护层开采卸压增透效应及瓦斯抽采技术研究[J].采矿与安全工程学报,2018,35(5):1045-1053. CHENG Xiang, ZHAO Guangming, LI Yingming, et al. Study on relief-pressure antireflective effect and gas extraction technology for mining soft rock protective seam[J]. Journal of Mining & Safety Engineering, 2018, 35(5): 1045-1053.
[16] 焦振华,陶广美,王浩,等.晋城矿区下保护层开采覆岩运移及裂隙演化规律研究[J].采矿与安全工程学报,2017,34(1):85-90. JIAO Zhenhua, TAO Guangmei, WANG Hao, et al. Overburden strata movement and fissure evolution in lower protective layer in Jincheng mining district[J]. Journal of Mining & Safety Engineering, 2017, 34(1): 85-90.
[17] 徐刚,王磊,金洪伟,等.上保护层开采对下部特厚煤层移动变形规律及保护效果考察研究[J].中国安全生产科学技术,2019,15(6):36-41. XU Gang, WANG Lei, JIN Hongwei, et al. Research on the movement and deformation law and protection effect of upper protective layer mining on the lower extra-thick coal seam[J]. China Safety Science & Technology, 2019, 15(6): 36-41.
[18] 殷伟,张强,韩晓乐,等.混合综采工作面覆岩运移规律及空间结构特征分析[J].煤炭学报,2017,42(2):388-396. YIN Wei, ZHANG Qiang, HAN Xiaole, et al. Overlying strata movement law and spatial structure analysis of fully mechanized mixed mining of backfilling and caving[J]. Journal of China Coal Society, 2017, 42(2): 388-396.
[19] 何团,黄志增,李春睿,等.特厚煤层综放工作面侧向煤体应力时空演化特征[J].采矿与安全工程学报,2018,35(1):100-105. HE Tuan, HUANG Zhizeng, LI Chunrui, et al. Spatial-temporal evolution characteristics of lateral coal body stress in fully mechanized caving face of extremely thick coal seam[J]. Journal of Mining & Safety Engineering, 2018, 35(1): 100-105.
[20] 赵雁海,周晨华,张新,等.浅埋单一关键层断裂覆岩压力成拱效应及分布特征[J].煤炭学报,2020,45(S1):1-11. ZHAO Yanhai, ZHOU Chenhua, ZHANG Xin, et al. The pressure arching effect and distribution characteristics of fractured strata of single key layer under shallow buried condition[J]. Journal of China Coal Society, 2020, 45(S1): 1-11.
[21] 黄亮,陈国栋,王博.结构力学中三铰斜拱等代梁的探索与应用[J].力学与实践,2015,37(4):525-527. [22] 史红,姜福兴.采场上覆大厚度坚硬岩层破断规律的力学分析[J].岩石力学与工程学报,2004(18):3066-3069. SHI Hong, JIANG Fuxing. Mechanical analysis of rupture regularity of hard and massive overlying strata of longwall face[J]. Chinese Journal of Rock Mechanics and Engineering, 2004(18): 3066-3069.
[23] 苏少卿,刘丹丹,关群.弹性力学[M].武汉:武汉大学出版社,2013:66-67. -
期刊类型引用(2)
1. 杨进,谢雄刚,丁锐,曹文梁,熊欣标. 高温场下矿井煤层钻孔瓦斯抽排效果研究. 煤矿安全. 2024(07): 9-14 . 本站查看
2. 周银波,李晓丽,李晗晟,王佳乐,毛淑星,王世杰. 煤体吸附变形对3种气体渗透率演化的影响. 煤矿安全. 2021(11): 16-21 . 本站查看
其他类型引用(7)
计量
- 文章访问数: 14
- HTML全文浏览量: 0
- PDF下载量: 13
- 被引次数: 9