基于Levenberg Marquardt反演的福建小煤矿底板富水性分析
Analysis on water-richness of small coal mine floor based on Levenberg Marquardt inversion in Fujian Province
-
摘要: 以福建黄土坑煤矿为研究对象,采用网络并行电法技术,从三维探测数据处理角度阐述了Levenberg Marquardt反演原理及模型构建,并通过引入光滑约束模型以及自适应调节阻尼因子实施电阻率数据反演,由此获取了该矿采煤工作面底板下不同深度探测异常区视电阻率空间分布情况。研究表明:探测区域存在6个相对低阻异常区且富水性强弱参半,其中Dz1、Dz2、Dz6较弱;Dz3、Dz4、Dz5较强,呈现出浅部较深部强、北强南弱的特征,与钻探验证结果吻合,可信度高。
-
关键词:
- 小煤矿 /
- 底板富水性 /
- Levenberg Marquardt反演 /
- 网络并行电法 /
- 三维探测数据处理
Abstract: Taking Huangtukeng Coal Mine in Fujian Province as the research object, using network parallel electrical method technology, this paper expounds Levenberg Marquardt inversion principle and model construction from the perspective of three-dimensional detection data processing, and implements resistivity data inversion by introducing smooth constraint model and adaptive adjustment of damping factor, thus, the spatial distribution of apparent resistivity in different depth detection abnormal areas under the floor of the coal mining face are obtained. The results show that there are six relatively low resistivity anomaly areas in the detection area, and the water-richness is half strong and half weak, among which Dz1, Dz2 and Dz6 are weak; Dz3, Dz4 and Dz5 are strong, showing the characteristics of the water-richness of stronger in shallow than in deep, stronger in the north and weaker in the south, which is consistent with the drilling verification results and has high reliability. -
-
[1] 武强,崔芳鹏,赵苏启,等.矿井水害类型划分及主要特征分析[J].煤炭学报,2013,38(4):561-565. WU Qiang, CUI Fangpeng, ZHAO Suqi, et al. Type classification and main characteristics of mine water disasters[J]. Journal of China Coal Society, 2013, 38(4): 561-565.
[2] 靳德武.我国煤矿水害防治技术新进展及其方法论思考[J].煤炭科学技术,2017,45(5):141-147. JIN Dewu. New development of water disaster prevention and control technology in China coal mine and consideration on methodology[J]. Coal Science and Technology, 2017, 45(5): 141-147.
[3] 吴超凡,邱占林,廖存金,等.矿井直流电法在福建小煤矿探测水中的应用[J].煤炭技术,2012,31(9):116-118. WU Chaofan, QIU Zhanlin, LIAO Cunjin, et al. Application of mine DC method to detecting water of the small coal mines in Fuiian[J]. Coal Technology, 2012, 31(9): 116-118.
[4] 游小鹰,谢如谦,刘贤龙.矿井瞬变电磁法在福建煤矿水害探测中的应用[J].能源与环境,2012(4):28-29 [5] 张平松,孙斌杨.煤层回采工作面底板破坏探查技术的发展现状[J].地球科学进展,2017,32(6):577. ZHANG Pingsong, SUN Binyang. Development status of the detection technology for coal-seam stope floor damage[J]. Advances in Earth Science, 2017, 32(6): 577.
[6] 刘向红,张平松,孙林华,等.三维直流电阻率法在水源井探测中的应用研究[J].中国地质,2012,39(5):1421-1426. LIU Xianghong, ZHANG Pingsong, SUN Linhua, et al. The application of three-dimensional DC resistivity method to the detection of water wells[J]. Geology in China, 2012, 39(5):1421-1426.
[7] 刘盛东,吴荣新,张平松,等.三维并行电法勘探技术与矿井水害探查[J].煤炭学报,2009,34(7):927. LIU Shengdong, WU Rongxin, ZHANG Pingsong, et al. Three-dimensional parallel electric surveying and its applications in water disaster exploration in coal mines[J]. Journal of China Coal Society, 2009, 34(7): 927.
[8] 付茂如,张平松,吴荣新,等.矿井工作面底板水害探查试验模拟研究[J].安徽理工大学学报(自然科学版),2018,38(1):20-24. FU Maoru, ZHANG Pingsong, WU Rongxin, et al. Study on the simulation test of floor-water disaster detection in working face[J]. Journal of Anhui University of Science and Technology(Natural Science), 2018, 38(1): 20-24.
[9] 吴超凡,胡雄武,刘盛东,等.巷道掘进工作面瞬变电磁超前探测模拟及应用[J].中国安全科学学报,2012,22(9):121-126. WU Chaofan, HU Xiongwu, LIU Shengdong, et al. Simulation and application of advanced detection for water-bearing body ahead of driving tunnel with transient electromagnetic method[J]. China Safety Science Journal, 2012, 22(9):121-126.
[10] 胡雄武,孟当当,张平松,等.采煤工作面底板水视电阻率全方位探测方法[J].煤炭学报,2019,44(8):2369-2376. HU Xiongwu, MENG Dangdang, ZHANG Pingsong, et al. An all-directional detection method of apparent resistivity for water from the floor strata of coal-mining face[J]. Journal of China Coal Society, 2019, 44(8): 2369-2376.
[11] 吴荣新,刘盛东,张平松.双巷并行三维电法探测煤层工作面底板富水区[J].煤炭学报,2010,35(3):454-457. WU Rongxin, LIU Shengdong, ZHANG Pingsong. The exploration of two-gateways parallel 3-D electrical technology for water-rich area within coal face floor[J]. Journal of China Coal Society, 2010, 35(3): 454-457.
[12] 邱占林,吴超凡,陈文荣,等.基于阵列式并行电法的掘进前方富水性探测[J].煤矿安全,2019,50(4):157-163. QIU Zhanlin, WU Chaofan, CHEN Wenrong, et al. Detection on water abundance ahead of tunneling based on aligned array parallel electrical method[J]. Safety in Coal Mines, 2019, 50(4): 157-163.
[13] Marquardt D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2): 431-441. [14] Kleefeld A, Rei?覻el M. The Levenberg Marquardt method applied to a parameter estimation problem arising from electrical resistivity tomography[J]. Applied Mathematics and Computation, 2011, 217(9): 4490-4501. [15] Grosse C. A program for the fitting of Debye, Cole Cole, Cole Davidson, and Havriliak Negami dispersions to dielectric data[J]. Journal of Colloid and Interface Science, 2014, 419: 102-106. [16] 胡玉超.矿井无线电波透视技术探测模式研究[J].物探与化探,2018,42(1):213-219. HU Yuchao. A study of detection mode of mine radio wave perspective technology[J]. Geophysical and Geochemical Exploration, 2018, 42(1): 213-219.
[17] 何仲秋.福建晚古生代聚煤构造特征及其演化[J].中国煤田地质,2003,15(1):5-8. HE Zhongqiu. Coal-accumulating structural characteristics of late palaeozoic era and its evolution in Fujian[J]. Coal Geology of China, 2003, 15(1): 5-8.
[18] 福建省121地质大队.福建省龙岩市新罗区黄土坑煤矿资源储量调查报告[R].龙岩:福建省121地质大队,2010.
计量
- 文章访问数: 18
- HTML全文浏览量: 0
- PDF下载量: 5