遗留煤柱扰动下服务巷道变形破坏机理及防冲技术
Deformation mechanism and rock burst prevention technology of service roadway under residual coal pillar
-
摘要: 针对大面积遗留煤柱下伏煤层开采时出现的应力集中、巷道围岩变形、冲击破坏及支护困难等问题,采用理论分析和数值模拟对河北某矿上覆5煤层遗留煤柱扰动下8、9煤层应力分布规律及下伏巷道开挖稳定性进行了对比分析。研究表明:遗留煤柱承载上覆载荷后应力根据煤柱宽度由中部向两侧依次呈现出“双峰形”、“马鞍形”、“梯形”及“单峰形”分布形态,且在不规则部分应力集中程度更高,对底板煤层的扰动范围影响较大;遗留煤柱应力峰值最大值52 MPa,应力传递至下伏煤层达到44 MPa,为原始应力的2.2倍,服务巷道开挖后应力为37 MPa,是原始应力1.8倍,增加了巷道围岩破坏程度和冲击地压危险性。通过加强支护和巷道围岩卸压等方式对遗留煤柱下伏服务巷道进行围岩控制,以保证残留煤柱内服务巷道的安全稳定运行。Abstract: In view of stress concentration, roadway deformation, rock burst and difficult support in the mining of the underlying coal seam under the residual coal pillar, we uses theoretical analysis and numerical simulation to analyze the stress distribution law of 8# and 9# coal seams and the stability of roadway under the disturbance of residual coal pillar in overlying 5# coal seam in a mine of Hebei. The research shows that the stress of the residual coal pillar after bearing the load presents the shape of “double peak”, “saddle”, “trapezoid” and “single peak” from the middle according to the width of the coal pillar. The stress concentration is higher in the irregular part of coal pillar, which has a great influence on the disturbance range of floor coal seam. The peak stress of the residual coal pillar is 52 MPa, and the stress transmitted to the underlying coal seam reaches 44 MPa, which is 2.2 times of the original stress. After the excavation of the service roadway, the stress is 37 MPa, which is 1.8 times of the original stress. Finally, the roadway under the residual coal pillar is controlled by strengthening support and relieving pressure of surrounding rock, so as to ensure the safety and stability of the service roadway.
-
-
[1] 冯国瑞,白锦文,史旭东,等.遗留煤柱群链式失稳的关键柱理论及其应用展望[J].煤炭学报,2021,46(1):164-179. FENG Guorui, BAI Jinwen, SHI Xudong, et al. Key pillar theory in the chain failure of residual coal pillars and its application prospect[J]. Journal of China Coal Society, 2021, 46(1): 164-179.
[2] 盖德成,姜福兴,李东,等.煤柱效应下底板致冲机理与巷道布置优化[J].采矿与安全工程学报,2020,37(2):282-288. GAI Decheng, JIANG Fuxing, LI Dong, et al. Floor burst mechanism and roadway layout optimization under the influence of coal pillar[J]. Journal of Mining & Safety Engineering, 2020, 37(2): 282-288.
[3] 武越超.残留煤柱影响下下伏近距离煤层开采覆岩运动规律研究[D].徐州:中国矿业大学,2017. [4] 秦凯,王健达,李宏艳,等.集中煤柱诱发下伏近距离煤层异常矿压及机理研究[J].煤炭科学技术,2019, 47(8):102-107. QIN Kai, WANG Jianda, LI Hongyan, et al. Study on abnormal mine pressure and mechanism of near-distance coal seam induced by concentrated coal pillar[J]. Coal Science and Technology, 2019, 47(8): 102-107.
[5] 顾士坦,台连海,陈长鹏,等.深部巷道围岩稳定性影响因素显著性分析[J].矿业研究与开发,2020,40(9):71-74. GU Shitan, TAI Lianhai, CHEN Changpeng, et al. Significance analysis on the factors affecting surrounding rock stability in deep roadway[J]. Mining Research and Development, 2020, 40(9): 71-74.
[6] 李术才,王雷,江贝,等.动压影响煤柱下方巷道微震特征及破坏机制[J].中国矿业大学学报,2019,48(2):247. LI Shucai, WANG Lei, JIANG Bei, et al. Microseismic characteristic and failure mechanism of roadway below coal pillar under dynamic pressure[J]. Journal of China University of Mining & Technology, 2019, 48(2): 247.
[7] 李春元,王泓博,石瑶玉.上覆遗留区段煤柱对下伏煤层开采扰动影响研究[J].煤炭科学技术,2020,48(3):232-239. LI Chunyuan, WANG Hongbo, SHI Yaoyu. Study on disturbing influence of overlying remaining coal pillars on underlying coal seam mining[J]. Coal Science and Technology, 2020, 48(3): 232-239.
[8] 王志强,徐春虎,王鹏,等.孤岛工作面顶底板应力传递规律数值模拟研究[J].矿业科学学报,2020,5(1):67-75. WANG Zhiqiang, XU Chunhu, WANG Peng, et al. Study on numerical simulation of stress transfer law of isolated working face in top and bottom plate[J]. Journal of Mining Science and Technology, 2020, 5(1): 67.
[9] 康继忠,神文龙,张彪.近距离残留煤柱底板应力场形成机理[J].煤矿安全,2016,47(5):212-214. KANG Jizhong, SHEN Wenlong, ZHANG Biao. Formation mechanism of stress field under residual coal pillar in close coal seams[J]. Safety in Coal Mines, 2016, 47(5): 212-214.
[10] 于洋,陈勇,赵祥岍.采空区残留煤柱内巷道布置与围岩控制技术[J].煤炭工程,2019,51(9):66. YU Yang, CHEN Yong, ZHAO Xiangyan. Roadway layout and surrounding rock control technology in gob residual pillar[J]. Coal Engineering, 2019, 51(9): 66.
[11] 肖丹,车禹恒.基于半平面体理论的煤柱底板应力传递规律[J].煤矿安全,2018,49(2):214-218. XIAO Dan, CHE Yuheng. Coal pillar floor stress distribution laws based on half-plane body theory[J]. Safety in Coal Mines, 2018, 49(2): 214-218.
[12] 薛成春,曹安业,牛风卫,等.深部不规则孤岛煤柱区冲击地压机理及防治[J].采矿与安全工程学报,2021,38(3):479-486. XUE Chengchun, CAO Anye, NIU Fengwei, et al. Mechanism and prevention of rock burst in deep irregular isolated coal pillar[J]. Journal of Mining & Safety Engineering, 2021, 38(3): 479-486.
[13] 刘伟韬,穆殿瑞,谢祥祥,等.倾斜煤层底板采动应力分布规律及破坏特征[J].采矿与安全工程学报,2018,35(4):756. LIU Weitao, MU Dianrui, XIE Xiangxiang, et al. Rules of stress distributions and failure characteristics in inclined coal seam floor due to mining[J]. Journal of Mining & Safety Engineering, 2018, 35(4): 756.
[14] 窦林名,卢安良,曹晋荣,等.双煤层不规则煤柱应力-能量演化规律及防冲技术研究[J].煤炭科技,2021,42(2):1-9. DOU Linming, LU Anliang, CAO Jinrong, et al. Study on stress-energy evolution law of irregular coal pillar in double coal seams and anti-scouring technology[J]. Coal Science & Technology Magazine, 2021, 42(2): 1-9.
[15] 曹健,黄庆享.浅埋近距煤层煤柱集中应力传递规律分析[J].采矿与安全工程学报,2021,38(6):1071. CAO Jian, HUANG Qingxiang. Concentrated stress transfer mechanism of coal pillars in shallow-buried closely spaced multi-seam mining[J]. Journal of Mining & Safety Engineering, 2021, 38(6): 1071.
[16] 张宏伟,辛金鑫,荣海.上山保护煤柱应力传递规律解析[J].辽宁工程技术大学学报(自然科学版),2021,40(4):287-294. ZHANG Hongwei, XIN Jinxin, RONG Hai. Analysis of stress transfer law of coal barrier pillar of roadway[J]. Journal of Liaoning Technical University(Natural Science), 2021, 40(4): 287-294.
[17] 钱鸣高,许家林,王家臣,等.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2021. -
期刊类型引用(4)
1. 刘凤明. 上覆遗留大煤柱下采动影响巷道围岩变形机理及控制技术. 山西焦煤科技. 2024(01): 11-14+21 . 百度学术
2. 宋哲强. 基于不同倾角的上覆遗留煤柱下巷道合理布置数值模拟分析. 晋控科学技术. 2024(02): 27-32 . 百度学术
3. 杜怀龙,刘忠平,田志诚. 近距离煤层上覆遗留煤柱应力扰动特征研究及应用. 矿业安全与环保. 2024(06): 112-121 . 百度学术
4. 罗文,贾士耀. 综采工作面过区段集中煤柱矿压显现机理及顶板控制技术研究. 煤炭工程. 2023(12): 95-101 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 38
- HTML全文浏览量: 3
- PDF下载量: 11
- 被引次数: 5