层状构造煤层定向钻孔水力压裂瓦斯高效抽采技术
High efficiency gas extraction technology of directional drilling hydraulic fracturing in stratified tectonic coal seams
-
摘要: 为实现层状构造煤层瓦斯高效抽采,以榆树田煤矿为试验点,开展层状构造煤层定向钻孔水力压裂瓦斯高效抽采技术研究。针对榆树田煤矿下5煤层层状构造特征,经过充分分析将110503运输巷第2循环瓦斯抽采压裂钻孔布置于半暗型煤分层中,累计施工顺层钻孔5个,累计钻孔长度3 000 m,钻孔走向控制范围600 m,倾向控制范围为巷道上、下帮轮廓线外各15 m;钻孔累计压裂长度约2 500 m,累计注液量570 m3,各孔段起裂压力介于7.6~8.8 MPa,最大泵注压力介于11.9~13.8 MPa。研究结果表明:对于层状构造煤层而言,压裂钻孔布孔层位的不同直接影响着煤层整体压裂效果及瓦斯抽采效果,相比于110503运输巷第1循环定向压裂钻孔没有考虑层状构造布孔于煤厚1/2处半亮型煤分层中,此次第2循环定向压裂钻孔布孔于半暗型煤分层中钻场月平均瓦斯抽采体积分数提高4.3倍,月平均瓦斯抽采纯量提高3.2倍。Abstract: In order to achieve high-efficiency gas drainage in stratified tectonic coal seams, this paper takes Yushutian Coal Mine as the test point to carry out the research on high-efficiency gas drainage technology of directional drilling hydraulic fracturing in stratified tectonic coal seams. According to the stratified tectonic characteristics of the lower 5# coal seam in Yushutian Coal Mine, the second cycle gas drainage and fracturing boreholes of 110503 transportation roadway are arranged in the semi dark briquette stratification. A total of 5 bedding boreholes are constructed, the cumulative drilling length is 3 000 m, the drilling direction control range is 600 m, and the inclination control range is 15 m outside the contour lines of the upper and lower sides of the roadway; the cumulative fracturing length of the borehole is about 2 500 m, the cumulative liquid injection volume is 570 m3, the fracture initiation pressure of each hole section is 7.6-8.8 MPa, and the maximum pump injection pressure is 11.9-13.8 MPa. The research results show that compared with the first cycle directional fracturing borehole in 110503 transportation roadway without considering the stratified tectonic in the semi bright briquette layer at 1/2 of the coal thickness, the second cycle directional fracturing borehole is arranged in the semi dark briquette layer, the monthly average gas drainage concentration of the drilling yard is increased by 4.3 times, and the monthly average gas drainage purity is increased by 3.2 times.
-
-
[1] 国家安全生产监督管理总局,国家煤矿安全监察局.煤矿安全规程[M].北京:煤炭工业出版社,2016. [2] 国家煤矿安全监察局.防治煤与瓦斯突出细则[M]. 北京:煤炭工业出版社,2019. [3] 石智军,李泉新,姚克.煤矿井下1 800 m水平定向钻进技术与装备[J].煤炭科学技术,2015,43(2):109. SHI Zhijun, LI Quanxin, YAO Ke. Underground mine 1 800 m horizontal directional drilling technology and equipment[J]. Coal Science and Technology, 2015, 43(2): 109-113.
[4] 陈冬冬,孙四清,张俭,等.井下定向长钻孔水力压裂煤层增透技术体系与工程实践[J].煤炭科学技术,2020,48(10):84-89. CHEN Dongdong, SUN Siqing, ZHANG Jian, et al.Technical system and engineering practice of coal seam permeability improvement through underground directional long borehole hydraulic fracturing[J]. Coal Science and Technology, 2020, 48(10): 84-89.
[5] 郑凯歌.碎软低透煤层底板梳状长钻孔分段水力压裂增透技术研究[J].采矿与安全工程学报,2020,37(2):273-280. ZHENG Kaige. Permeability improving technology by sectional hydraulic fracturing for comb-like long drilling in floor of crushed and soft coal seam with low permeability[J]. Journal of Mining & Safety Engineering, 2020, 37(2): 272-281.
[6] 孙四清,张群,闫志铭,等.碎软低渗高突煤层井下长钻孔整体水力压裂增透工程实践[J].煤炭学报,2017, 42(9):2337-2344. SUN Siqing, ZHANG Qun, YAN Zhiming, et al. Practice of permeability enhancement through overall hydraulic fracturing of long hole in outburst-prone soft crushed coal seam with low permeability[J]. Journal of China Coal Society, 2017, 42(9): 2337-2344.
[7] 王华,严德天.煤田地质学简明教程[M].武汉:中国地质大学出版社,2015. [8] 韩德馨.中国煤岩学[M].徐州:中国矿业大学出版社,1996:26-93. [9] 邹艳荣,杨起.煤中的孔隙与裂隙[J].中国煤田地质,1998,10(4):39-48. [10] 王耀强,李文.阿艾矿区地质构造及其演化对煤层瓦斯生成及赋存的控制[J].煤炭技术,2021,40(10):76-79. WANG Yaoqiang, LI Wen. Control of geological structure and its evolution of A′ai mining area on generation and occurrence of coal seam gas[J]. Coal Technology, 2021, 40(10): 76-79.
[11] 李文,王广宏,欧聪,等.不同布孔方式下梳状定向长钻孔水力压裂数值模拟及工程应用[J].煤矿安全,2021,52(5):72-77. LI Wen, WANG Guanghong, OU Cong, et al. Numerical simulation and engineering application of comb-shaped directional long borehole hydraulic fracturing under different arrangement of holes[J]. Safety in Coal Mines, 2021, 52(5): 72-77.
[12] 蓝盛,尹延春.侧压力系数对煤体水力裂缝扩展规律的影响研究[J].煤矿安全,2020,51(11):216-221. LAN Sheng, YIN Yanchun. Research on influence of lateral pressure coefficient on hydraulic fracturing propagation law in coal body[J]. Safety in Coal Mines, 2020, 51(11): 216-221.
[13] 袁志刚.煤岩体水力压裂裂缝扩展及对瓦斯运移影响研究[D].重庆:重庆大学,2014. [14] 张飞.豫西构造煤穿层钻孔水力压裂数值模拟及应用研究[D].焦作:河南理工大学,2015. [15] 黄炳香,程庆迎,刘长友,等.煤岩体水力致裂理论及其工艺技术框架[J].采矿与安全工程学报,2011,28(2):167-173. HUANG Bingxiang, CHENG Qingying, LIU Changyou, et al. Hydraulic fracturing theory of coal-rock mass and its technical framework[J]. Journal of Mining & Safety Engineering, 2011, 28(2): 167-173.
-
期刊类型引用(8)
1. 解文杰,孙传利,高亮亮. 矿井采掘煤层瓦斯抽采技术可行性研究. 西部探矿工程. 2025(02): 124-126+129 . 百度学术
2. 缑晓锋,杨飞,窦成义,郑文龙,和递,孔祥国. 特厚煤层定向长钻孔水力压裂瓦斯抽采技术及应用. 陕西煤炭. 2024(02): 65-69 . 百度学术
3. 温志强,陈学习,金霏阳,陈星宇. 高应力松软突出煤层定向长钻孔水力冲孔技术研究. 煤炭技术. 2024(03): 154-159 . 百度学术
4. 王晓东,戴康,孙海涛,满忠毅,李文龙,田纪辉. 卸压增透下底板定向拦截钻孔瓦斯抽采模拟研究. 煤炭技术. 2024(04): 155-160 . 百度学术
5. 曹艺钟. 离心式机械扩孔造穴装备在矿井瓦斯治理中的应用. 矿山机械. 2024(07): 11-15 . 百度学术
6. 吕杰. 水力压裂技术在矿井瓦斯抽采中的应用研究. 西部探矿工程. 2024(12): 154-156 . 百度学术
7. 崔伟. 瓦斯抽采钻孔封堵一体化封孔技术研究. 山东煤炭科技. 2023(10): 69-72 . 百度学术
8. 时巨辉. 低透气性煤层水力压裂增透瓦斯抽采技术研究. 山西冶金. 2023(10): 216-217+222 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 57
- HTML全文浏览量: 0
- PDF下载量: 43
- 被引次数: 9