• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

霍洛湾煤矿22206工作面水体下安全开采技术

关众

关众. 霍洛湾煤矿22206工作面水体下安全开采技术[J]. 煤矿安全, 2022, 53(12): 54-61.
引用本文: 关众. 霍洛湾煤矿22206工作面水体下安全开采技术[J]. 煤矿安全, 2022, 53(12): 54-61.
GUAN Zhong. Safe mining technology in 22206 working face under water of Huoluowan Coal Mine[J]. Safety in Coal Mines, 2022, 53(12): 54-61.
Citation: GUAN Zhong. Safe mining technology in 22206 working face under water of Huoluowan Coal Mine[J]. Safety in Coal Mines, 2022, 53(12): 54-61.

霍洛湾煤矿22206工作面水体下安全开采技术

Safe mining technology in 22206 working face under water of Huoluowan Coal Mine

  • 摘要: 霍洛湾煤矿22206工作面赋存条件为浅埋深薄基岩煤层,地表与覆岩均富水,研究水体下安全开采技术对工作面安全开采具有重要意义。通过理论分析方法确定了工作面导水断裂带高度,分析了工作面水害特征,提出了地表水采用截导水技术、地下含水层水采用井下疏放水工程和留设防水煤岩柱防水技术的水害分源防治技术思路。开采实践表明:地表截导水工程成功截断了呼和乌素沟,将呼和乌素沟河水导出到研究区外,降低了呼和乌素沟水体对井下开采的威胁性;22206工作面涌水量随时间逐渐增长,增长幅度平稳,没有出现涌水量大幅增长的现象,后期工作面涌水量开始随时间逐渐减少。
    Abstract: The 22206 working face of Huoluowan Coal Mine is under shallow buried depth and thin bedrock coal seam. Both the surface and overlying rock are rich in water. The study of safe mining technology under water is of great significance to the safe mining of the working face. The paper determines the height of the water-conducting fissure zone of the working face through theoretical analysis methods, analyzes the characteristics of the working face water damage, and proposes the technical ideas of separate source prevention and control of water hazards: using water interception technology for surface water, underground water drainage engineering for underground aquifer water, and water-proof coal rock pillar waterproof technology. The mining practice shows that the surface water interception and diversion project successfully cut off Huhe Wusu Gully and exported Huhe Wusu Gully river water out of the study area, reducing the threat of Huhe Wusu Gully water body to underground mining; the water inrush of 22206 working face gradually increases with time, the growth range is stable, there is no large increase water inrush phenomenon, and the water inrush of later working face gradually decreases with time.
  • [1] 贾继宝.水体下煤矿安全采煤技术的发展研究[J].山东煤炭科技,2015(5):144-145.

    JIA Jibao. Research and development of coal mine safety coal mining technology under water body[J]. Shandong Coal Science and Technology, 2015(5): 144-145.

    [2] 宋明达.水体下煤矿安全采煤技术的发展研究[J].能源与节能,2016(4):138-139.

    SONG Mingda. Development research on the safety mining technology used under water in coal mine[J]. Energy and Energy Conservation, 2016(4): 138-139.

    [3] 李涛.丰堠沟水体下采煤安全开采方案研究与探讨[J].煤炭与化工,2021(4):16-20.

    LI Tao. Research and discussion of the safe mining plan for mining under the water body of Fenghougou[J]. Coal and Chemical Industry, 2021(4): 16-20.

    [4] 许国胜,许胜军,李德海,等.赵城水库下煤炭开采安全性研究[J].煤矿安全,2013,44(4):43-45.

    XU Guosheng, XU Shengjun, LI Dehai, et al. Safety research on mining under Zhaocheng Reservoir[J]. Safety in Coal Mines, 2013, 44(4): 43-45.

    [5] 冯国财,徐白山,王东.三台子水库下压煤综放开采覆岩破坏充水特征[J].采矿与安全工程学报,2014,31(1):108-113.

    FENG Guocai, XU Baishan, WANG Dong. Features of overburden failure and water filling in coal mining with sub-level caving under Santaizi reservoir[J]. Journal of Mining & Safety Engineering, 2014, 31(1): 108-113.

    [6] 段霞.深部开采煤层防治水技术研究[J].山西化工,2019,39(4):82-84.

    DUAN Xia. Study on water control technology in deep mining coal seam[J]. Shanxi Chemical Industry, 2019, 39(4): 82-84.

    [7] 张胜军,侯群磊.疏水降压开采技术可行性研究[J].中州煤炭,2016(9):28-30.

    ZHANG Shengjun, HOU Qunlei. Study on feasibility of drainage and decreasing pressure method of coal mining[J]. Zhongzhou Coal, 2016(9): 28-30.

    [8] 王庆.准格尔矿区煤矿井下水害综合防治技术[J].煤矿安全,2021,52(6):104-108.

    WANG Qing. Comprehensive prevention and control technology of underground water disaster in Zhunger Mining Area[J]. Safety in Coal Mines, 2021, 52(6): 104-108.

    [9] 申绍锋.矿井水害发生机理及防治技术研究[J].山西化工,2021,41(2):80-81.

    SHEN Shaofeng. Study on the mechanism of occurrence and prevention of mine water hazard[J]. Shanxi Chemical Industry, 2021, 41(2): 80-81.

    [10] 王小勇.蒙陕矿区大储量采空区水害综合防治技术创新与实践[J].中国煤炭,2021,47(8):22-27.

    WANG Xiaoyong. Innovation and practice of comprehensive prevention and control technology for water disaster in goaf with large reserves of water in Mengshan mining area[J]. China Coal, 2021, 47(8): 22-27.

    [11] 朱伟,滕永海,唐志新.潞安矿区综采裂隙带发育高度规律实测研究[J].煤炭科学技术,2017,45(7):167-171.

    ZHU Wei, TENG Yonghai, TANG Zhixin. In-site study on development rule of fractured zone height by fully-mechanized mining in Lu’an Minefield[J]. Coal Science and Technology, 2017, 45(7): 167-171.

    [12] 秦伟,李文平.鄂尔多斯盆地深部煤层开采导水断裂带发育特征[J].煤矿安全,2021,52(6):217-222.

    QIN Wei, LI Wenping. Development characteristics of water conduction fracture zone in deep coal seam mining in Ordos Basin[J]. Safety in Coal Mines, 2021, 52(6): 217-222.

    [13] 周光,赵富强,马正龙,等.基于关键层位置的敏东一矿导水断裂带高度预测[J].矿业安全与环保,2021, 48(1):85-90.

    ZHOU Guang, ZHAO Fuqiang, MA Zhenglong, et al. Height prediction of fractured water-conducting zone in Mindong No.1 Coal Mine based on key stratum position[J]. Mining Safety & Environmental Protection, 2021, 48(1): 85-90.

    [14] 丁航.补连塔煤矿大采高工作面覆岩运移规律[J].煤矿安全,2019,50(12):179-183.

    DING Hang. Law of overlying strata movement in large mining height working face of Bulianta Coal Mine[J].Safety in Coal Mines, 2019, 50(12): 179-183.

    [15] 薛建坤,王皓,赵春虎,等.鄂尔多斯盆地侏罗系煤田导水裂隙带高度预测及顶板充水模式[J].采矿与安全工程学报,2020,37(6):1222-1230.

    XUE Jiankun, WANG Hao, ZHAO Chunhu, et al. Prediction of the height of water-conducting fracture zone and water-filling model of roof aquifer in Jurassic coalfield in Ordos Basin[J]. Journal of Mining & Safety Engineering, 2020, 37(6): 1222-1230.

  • 期刊类型引用(1)

    1. 李小四,岳阳. 巨厚砂岩含水层下安全开采可行性研究. 当代化工研究. 2024(20): 128-130 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  75
  • HTML全文浏览量:  0
  • PDF下载量:  30
  • 被引次数: 3
出版历程
  • 发布日期:  2022-12-19

目录

    /

    返回文章
    返回