清洁压裂液携带作用下支撑剂运移铺置规律研究
Study on proppant migration and placement under sand-carrying action of clean fracturing fluid
-
摘要: 为探究在清洁压裂液携带下支撑剂运移铺置的规律,基于计算流体力学(CFD),通过FLUENT数值模拟软件建立了欧拉多相流模型,模型考虑了压裂液流变性以及支撑剂颗粒的摩擦、碰撞;以平衡高度、平衡时间作为表征参数,研究了支撑剂粒径、密度和砂比对砂堤形态的影响。结果表明:清洁压裂液相比于常规压裂液,更易将支撑剂携带至裂缝深处,使支撑剂均匀铺置在裂缝中;在清洁压裂液的携带下,大粒径、高密度的支撑剂容易在裂缝口沉降,而小粒径、低密度支撑剂有助于提高压裂液的携砂能力将支撑剂向裂缝深处运输,在一定范围内增加砂比能提高砂堤高度和铺置区域,但过量的砂比对支撑剂砂堤形态影响甚微并且容易造成砂堵。Abstract: In order to explore the law of proppant migration and placement under clean fracturing fluid, an Euler multiphase flow model was established through FLUENT numerical simulation software based on computational fluid dynamics(CFD). The model takes into account the rheological properties of fracturing fluid and the friction and collision of proppant particles. The influence of proppant size, density and sand ratio on the shape of the sand dike is studied by using the equilibrium height and equilibrium time as the characterization parameters. The results show that the clean fracturing fluid is easier to carry the proppant to the depth of the fracture than the conventional fracturing fluid, so that the proppant is evenly distributed in the fracture; proppant with large particle size and high density can easily settle in the fracture opening under the carrying of the clean fracturing fluid, while proppant with small particle size and low density can improve the sand carrying capacity of fracturing fluid and transport proppant into deep fracture. Increasing sand ratio in a certain range can improve the height and laying area of the sand dike, but excessive sand ratio has little effect on the shape of the proppant sand dike and is easy to cause sand blockage.
-
-
[1] 门相勇,韩征,宫厚健,等.新形势下中国煤层气勘探开发面临的挑战与机遇[J].天然气工业,2018,38(9):10-16. MEN Xiangyong, HAN Zheng, GONG Houjian, et al.Challenges and opportunities of CBM exploration and development in China under the new situations[J]. Natural Gas Industry, 2018, 38(9): 10-16.
[2] 朱庆忠,杨延辉,左银卿,等.中国煤层气开发存在的问题及破解思路[J].天然气工业,2018,38(4):95. ZHU Qingzhong, YANG Yanhui, ZUO Yinqing, et al.CBM development in China: Challenges and solutions[J]. Natural Gas Industry, 2018, 38(4): 95.
[3] 赵金洲,任岚,沈骋,等.页岩气储层缝网压裂理论与技术研究新进展[J].天然气工业,2018,38(3):1-14. ZHAO Jinzhou, REN Lan, SHEN Cheng, et al. Latest research progresses in network fracturing theories and technologies for shale gas reservoir[J]. Natural Gas Industry, 2018, 38(3): 1-14.
[4] 李小刚,舒鸫锟,张平,等.煤层压裂缝内支撑剂输送物理模拟研究[J].油气藏评价与开发,2020,10(4):39-44. LI Xiaogang, SHU Dongkun, ZHANG Ping, et al. Physical simulation of proppant transportation in artificial fractures of coal seam[J]. Reservoir Evaluation and Development, 2020, 10(4): 39-44.
[5] 顾军.清洁压裂液在煤层气井压裂中的应用[J].化学工程与装备,2020(5):198-199. GU Jun. Application of clean fracturing fluid in frac-turing of coalbed methane wells[J]. Chemical Engineering & Equipment, 2020(5): 198-199.
[6] 张涛,郭建春,刘伟.清水压裂中支撑剂输送沉降行为的CFD模拟[J].西南石油大学学报,2014,36(1):74-82. ZHANG Tao, GUO Jianchun, LIU Wei. CFD simulation of proppant transportation and settling in water fracture treatments[J]. Journal of Southwest Petroleum University, 2014, 36(1): 74-82.
[7] 郝丽华.复杂裂缝内支撑剂沉降运移CFD数值模拟[J].石油化工应用,2020,39(3):30-32. HAO Lihua. CFD numerical simulation of proppants-ettlement and migration in complex fractures[J]. Petrochemical Industry Application, 2020, 39(3): 30-32.
[8] 任岚,林辰,林然,等.复杂裂缝中低密度支撑剂铺置数值模拟[J].大庆石油地质与开发,2021,40(6):52. REN Lan, LIN Chen, LIN Ran, et al. Numerical simulation of the low-density proppant placement in complex fractures[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(6): 52.
[9] 张鹏.煤层气井压裂液流动和支撑剂分布规律研究[D].青岛:中国石油大学,2011. [10] 杨枫.清洁压裂液强化煤层瓦斯解吸渗流特性研究[D].重庆:重庆大学,2017. [11] 周德胜,张争,惠峰,等.滑溜水压裂主裂缝内支撑剂输送规律实验及数值模拟[J].石油钻采工艺,2017, 39(4):499-508. ZHOU Desheng, ZHANG Zheng, HUI Feng, et al. E-xperiment and numerical simulation on transportation laws of proppant in major fracture during slick water fracturing[J]. Petroleum Drilling and Production Technology, 2017, 39(4): 499-508.
-
期刊类型引用(6)
1. 汪杰,赵康佳,龚润璞,续化蕾,江厚顺. 压裂支撑剂在迂曲粗糙裂缝中运移沉降规律研究. 长江大学学报(自然科学版). 2025(01): 81-90 . 百度学术
2. 王昌伟,左少杰,彭首清,许治远,甘瑞. 清洁压裂液作用前后煤孔隙结构及分形特征研究. 化工矿物与加工. 2024(02): 34-39 . 百度学术
3. 岳渊洲,党瑞明,李晓玲,尚倩,王华. 油气开发用表面活性剂压裂液的研制与室内研究. 当代化工. 2024(08): 1870-1874 . 百度学术
4. 田鸿照,刘湘子,陈宗利,史小军,李民,苑秀发. 致密气藏水力压裂支撑剂运移影响因素数值模拟. 石油化工应用. 2024(09): 19-23 . 百度学术
5. 闫琦睿,蒋建方,刘搏,褚占宇,刘金栋. 大排量压裂组合粒径支撑剂铺置效果研究. 石油地质与工程. 2024(06): 112-119 . 百度学术
6. 李浩哲,姜在炳,孙四清,朱传勇,范耀,郭勇,程斌. 井地联合压裂长输管路支撑剂悬浮运移规律模拟研究. 煤田地质与勘探. 2023(11): 34-43 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 36
- HTML全文浏览量: 7
- PDF下载量: 8
- 被引次数: 9