• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

霄云井田奥陶系灰岩岩溶发育规律研究

于小鸽, 吕华东, 张德明, 吕昌兴, 曲林燕

于小鸽, 吕华东, 张德明, 吕昌兴, 曲林燕. 霄云井田奥陶系灰岩岩溶发育规律研究[J]. 煤矿安全, 2022, 53(12): 22-27.
引用本文: 于小鸽, 吕华东, 张德明, 吕昌兴, 曲林燕. 霄云井田奥陶系灰岩岩溶发育规律研究[J]. 煤矿安全, 2022, 53(12): 22-27.
YU Xiaoge, LYU Huadong, ZHANG Deming, LYU Changxing, QU Linyan. Research on development law of Ordovician limestone karst in Xiaoyun Coalfield[J]. Safety in Coal Mines, 2022, 53(12): 22-27.
Citation: YU Xiaoge, LYU Huadong, ZHANG Deming, LYU Changxing, QU Linyan. Research on development law of Ordovician limestone karst in Xiaoyun Coalfield[J]. Safety in Coal Mines, 2022, 53(12): 22-27.

霄云井田奥陶系灰岩岩溶发育规律研究

Research on development law of Ordovician limestone karst in Xiaoyun Coalfield

  • 摘要: 为分析霄云井田奥陶系灰岩的三维展布规律,借助统计分析、物理化学试验等方法揭示奥陶系灰岩岩溶发育规律;依据分形理论、X衍射实验及玻片鉴定试验分析研究区断裂构造复杂程度、岩石矿物成分及裂隙发育程度;借助水质分析手段,通过计算研究区水样的水饱和指数(L.S.I.)、水稳定指数(R.S.I.)及沉淀指数(P.S.I.)分析岩溶水体稳定性;结合构造复杂程度分区图,矿物成分及水质分析试验结果总结岩溶发育规律。研究表明:横向上,受断层影响,研究区中西部奥陶系灰岩岩溶发育程度较高,纵向上,研究区岩溶发育的最有利位置位于距奥灰顶界面40~80 m段,但因研究区奥灰水饱和度较高,岩溶裂隙继续发生溶蚀的可能性较小。
    Abstract: In order to analyze the three-dimensional distribution law of Ordovician limestone in Xiaoyun Coalfield, based on the evolutionary regularity of tectonic stress in the study area, we reveal the development mechanism of Ordovician limestone karst with the help of statistical analysis and physical chemistry experience. First, according to the fractal theory, X-ray diffraction experiment and Glass slide qualification test, we analyze the complexity of fault structure, mineral component of rocks and development degree of fissures. Second, by means of water quality analysis, we calculate the Laagelier saturation index(L.S.I.), Ryzner stability index(R.S.I.), and precipitation index(P.S.I.) of water samples in the study area, and analyze the stability of karst aquifer. Finally, we conclude the development law of karst with the help of zone map of tectonic complexity, mineral component and results of water analysis experience. According to the study, influenced by faults, the development level in the central and western of the study area is higher horizontally, and the most appropriate location for karst development in the study area is 40-80 m away from the top interface of Ordovician limestone vertically. However, it is less likely that the karst fissure will continue to develop due to the higher saturation of Ordovician limestone water in study area.
  • [1] 施龙青,卜昌森,魏久传,等.华北型煤田奥灰岩溶水防治理论与技术[M].北京:煤炭工业出版社,2015.
    [2] 董书宁,郭小铭,刘其声,等.华北型煤田底板灰岩含水层超前区域治理模式与选择准则[J].煤田地质与勘探,2020,48(4):1-10.

    DONG Shuning, GUO Xiaoming, LIU Qisheng, et al. Model and selection criterion of zonal preact grouting to prevent mine water disasters of coal floor limestone aquifer in North China type coalfield[J]. Coal Geology & Exploration, 2020, 48(4): 1-10.

    [3] 李白英.预防矿井底板突水的"下三带"理论及其发展与应用[J].山东矿业学院学报(自然科学版),1999(4):11-18.

    LI Baiying. “Down Three Zones” in the prediction of the water inrush from coalbed floor aquifer theory, de-velopment and application[J]. Journal of Shandong Mi-ning Institute, 1999(4): 11-18.

    [4] 王作宇,张建华,刘鸿泉,等.承压水上近距煤层重复采动的底板岩体移动规律[J].煤炭科学技术,1995(2):9-12.
    [5] 张金才,刘天泉.论煤层底板采动裂隙带的深度及分布特征[J].煤炭学报,1990,15(2):46-55.

    ZHANG Jincai, LIU Tianquan. On depth of fissured zone in seam floor resulted from coal extraction and its distribution characteristics[J]. Journal of China Coal Society, 1990, 15(2): 46-55.

    [6] 钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):2-7.

    QIAN Minggao, MIAO Xiexing, XU Jialin. Theoretical study of key stratum in ground control[J]. Journal of China Coal Society, 1996, 21(3): 2-7.

    [7] 施龙青,韩进.开采煤层底板“四带”划分理论与实践[J].中国矿业大学学报,2005,34(1):19-26.

    SHI Longqing, HAN Jin. Theory and practice of dividing coal mining area floor into four-zone[J]. Journal of China University of Mining & Technology, 2005, 34(1): 19-26.

    [8] 国家煤矿安全监察局.煤矿防治水细则[M].北京:煤炭工业出版社,2018.
    [9] 刘守强,武强,曾一凡.《煤矿防治水细则》修订要点解析[J].煤炭工程,2019,51(3):1-4.

    LIU Shouqiang, WU Qiang, ZENG Yifan. Dissection of the main points in “Detailed Rules for Coal Mine Water Prevention and Control” modification[J]. Coal Engineering, 2019, 51(3): 1-4.

    [10] 魏本亮.霄云煤矿奥灰突水机理及快速治理研究[D].徐州:中国矿业大学,2020.
    [11] 虎维岳.华北东部深部岩溶及煤矿岩溶水害特征[J].煤田地质与勘探,2010,38(2):23-27.

    HU Weiyue. The characteristics of karst and deep coal mine karst water hazards in eastern North China[J]. Coal Geology & Exploration, 2010, 38(2): 23-27.

    [12] 徐志斌,王继尧,张大顺,等.煤矿断层网络复杂程度的分维描述[J].煤炭学报,1996,21(4):24-29.

    XU Zhibin, WANG Jiyao, ZHANG Dashun, et al. Fractal dimension description of complexity of fault network in coal mines[J]. Journal of China Coal Society, 1996, 21(4): 24-29.

    [13] 武昱东,琚宜文,侯泉林,等.断层分层信息维及其在深部煤炭开采地质条件预测中的应用[J].煤炭学报,2010,35(8):1323-1330.

    WU Yudong, JU Yiwen, HOU Quanlin, et al. Application of fault’s information dimensions among different coal seams in the prediction of deep coal resources exploitation[J]. Journal of China Coal Society, 2010, 35(8): 1323-1330.

    [14] 尹楠.基于高斯混合模型的期望最大化聚类算法[J].统计与决策,2017(4):87-89.

    YIN Nan. The expectation maximization clustering algorithm based on Gaussian mixture model[J]. Statistics & Decision, 2017(4): 87-89.

    [15] 何庆,易娜,汪新勇,等.基于高斯混合模型的最大期望聚类算法研究[J].微型电脑应用,2018,34(5):50-52.

    HE Qing, YI Na, WANG Xinyong, et al. Research on maximum expected clustering algorithm based on Gaussian mixture model[J]. Microcomputer Applications, 2018, 34(5): 50-52.

    [16] 张玉新,张亚宾,侯玉花,等.X衍射分析技术在束鹿凹陷特殊岩性识别中的应用[J].中外能源,2021,26(S1):78-82.

    ZHANG Yuxin, ZHANG Yabin, HOU Yuhua, et al. Application of X-ray diffraction analysis technique in special lithology identification of Shulu sag[J]. Sino-Global Energy, 2021, 26(S1): 78-82.

    [17] 邵东梅.华北典型煤矿区奥陶系碳酸盐岩溶蚀试验研究[D].北京:煤炭科学研究总院,2009.
    [18] 刘美娟.肥城煤田奥陶系灰岩岩溶发育规律及其控制因素研究[D].青岛:山东科技大学,2011.
  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  54
  • HTML全文浏览量:  4
  • PDF下载量:  27
  • 被引次数: 1
出版历程
  • 发布日期:  2022-12-19

目录

    /

    返回文章
    返回