水-热耦合作用下含瓦斯柱状原煤渗吸效应的实验研究
Experimental study on imbibition effect of columnar raw coal containing gas under water-thermal coupling action
-
摘要: 为了考察水-热耦合作用下水分沿煤体原始裂隙、孔隙渗吸置换吸附瓦斯的特性,开展了50 mm×100 mm柱状原煤以0.5、1.0、2.0、3.0 MPa瓦斯初始平衡压力,在20、40、60、80 ℃下的240 h渗吸实验。实验表明:高温可显著提高水分渗吸置换甲烷效率,0.5 MPa初始低压下,80 ℃较20 ℃的渗吸置换率(240 h)可提高1.6倍,增大至57.21%;同压下置换率(240 h)及渗吸常数均随着实验温度的升高而增大,同温下置换率(240 h)及渗吸常数则随着初始压力的增大而减小,同温下低压渗吸置换效率高于高压,高压会抑制渗吸置换效应;低压-高温环境下水分渗吸置换效率更高,不宜直接在高压储层中进行注热(水),应在抽采至出现低压瓦斯驱动力不足时,再注热(水)可进一步提高瓦斯采出率。Abstract: In order to investigate the characteristics of water displacement and adsorption of gas along the original cracks and pores of coal under the action of water-thermal coupling, imbibition experiments of 50 mm×100 mm columnar raw coal were carried out for 240 h at 20 ℃, 40 ℃, 60 ℃ and 80 ℃ under the initial equilibrium gas pressure of 0.5 MPa, 1.0 MPa, 2.0 MPa and 3.0 MPa. Experiments show that: high temperature can significantly improve the efficiency of water imbibition replacement for methane. Under the initial low pressure of 0.5 MPa, the imbibition replacement rate(240 h) at 80 ℃ is 1.6 times higher than that at 20 ℃, increasing to 57.21%; the displacement rate(240 h) and imbibition constant at the same pressure increased with the increase of the experimental temperature, while the displacement rate(240 h) and imbibition constant at the same temperature decreased with the increase of the initial pressure; the imbibition displacement efficiency at low pressure was higher than that at high pressure at the same temperature, and high pressure would inhibit the imbibition displacement effect; the water imbibition displacement efficiency is higher in the low-temperature environment, so it is not suitable to directly inject heat(water) in thehigh-pressure reservoir; the gas recovery rate should be further improved by reinjecting heat(water) when the driving force of low-pressure gas is insufficient.
-
Keywords:
- heat injection /
- imbibition effect /
- columnar raw coal /
- imbibition constant /
- replace rate /
- recovery rate
-
-
[1] 王亮,胡从亮,张嘉玮,等.贵州区域地热成因探讨[J].物探与化探,2022,46(2):304-315. WANG Liang, HU Congliang, ZHANG Jiawei, et al. Exploration of the genesis of regional geothermal resources in Guizhou Province[J]. Geophysical and Geochemical Exploration, 2022, 46(2): 304-315.
[2] 王俏,王兆丰,代菊花,等.深部煤层无烟煤甲烷吸附特性研究[J].煤矿安全,2021,52(6):28-33. WANG Qiao, WANG Zhaofeng, DAI Juhua, et al. Study on methane adsorption characteristics of anthracite in deep coal seam[J]. Safety in Coal Mines, 2021, 52(6): 28-33.
[3] 陈向军,赵伞,司朝霞,等.不同变质程度煤孔隙结构分形特征对瓦斯吸附性影响[J].煤炭科学技术,2020,48(2):118-124. CHEN Xiangjun, ZHAO San, SI Chaoxia, et al. Fractal characteristics of pore structure of coal with different metamorphic degrees and its effect on gas adsorption characteristics[J]. Coal Science and Technology, 2020, 48(2): 118-124.
[4] 唐明云,张亮伟,郑春山,等.考虑蒸汽相变煤层气注热开采数值模拟研究[J].采矿与安全工程学报,2022,39(2):370-379. TANG Mingyun, ZHANG Liangwei, ZHENG Chunshan, et al. Numerical simulation of coalbed methane production by heat injection considering steam condensation[J]. Journal of Mining & Safety Engineering, 2022, 39(2): 370-379.
[5] 唐明云,张海路,段三壮,等.基于Langmuir模型温度对煤吸附解吸甲烷影响研究[J].煤炭科学技术,2021,49(5):182-189. TANG Mingyun, ZHANG Hailu, DUAN Sanzhuang, et al. Study on effect of temperature on methane adsorption and desorption coal based on Langmuir model[J]. Coal Science and Technology, 2021, 49(5): 182-189.
[6] 王俏,王兆丰,董家昕,等.温升效应对焦煤吸附解吸甲烷的影响[J].安全与环境学报,2022,22(1):148. WANG Qiao, WANG Zhaofeng, DONG Jiaxin, et al. Study on the adsorption and desorption of methane from coking coal by temperature rise effect[J]. Journal of Safety and Environment, 2022, 22(1): 148.
[7] 易欣,任瑶,肖旸,等.热-力耦合作用下煤岩体渗流特性研究[J].煤矿安全,2022,53(4):56-61. YI Xin, REN Yao, XIAO Yang, et al. Study on coal permeability characteristics under thermo-mechanical coupling[J]. Safety in Coal Mines, 2022, 53(4): 56-61.
[8] 李志强,王登科,宋党育.新扩散模型下温度对煤粒瓦斯动态扩散系数的影响[J].煤炭学报,2015,40(5):1055-1064. LI Zhiqiang, WANG Dengke, SONG Dangyu. Influence of temperature on dynamic diffusion coefficient of CH4 into coal particles by new diffusion model[J]. Journal of China Coal Society, 2015, 40(5): 1055-1064.
[9] 李波波,高政,杨康,等.温度与孔隙压力耦合作用下煤岩吸附-渗透率模型研究[J].岩石力学与工程学报,2020,39(4):668. LI Bobo, GAO Zheng, YANG Kang, et al. Study on coal adsorption-permeability model under the coupling of temperature and pore pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(4): 668.
[10] 秦玉金,苏伟伟,田富超,等.煤层注水微观效应研究现状及发展方向[J].中国矿业大学学报,2020,49(3):428. QIN Yujin, SU Weiwei, TIAN Fuchao, et al. Research status and development direction of microcosmic effect under coal seam water injection[J]. Journal of China University of Mining & Technology, 2020, 49(3): 428.
[11] 樊亚庆,王兆丰,陈金生,等.水分对煤中瓦斯的置换作用实验研究[J].煤矿安全,2017,48(12):25-27. FAN Yaqing, WANG Zhaofeng, CHEN Jinsheng, et al. Experimental study on replacement effect of water to gas in coal[J]. Safety in Coal Mines, 2017, 48(12): 25-27.
[12] 吴家浩,王兆丰,苏伟伟,等.自吸水分对煤中瓦斯解吸的综合影响[J].煤田地质与勘探,2017,45(1):35-40. WU Jiahao, WANG Zhaofeng, SU Weiwei, et al. Comprehensive influence of self-adsorbed water on gas desorption in coal[J]. Coal Geology & Exploration, 2017, 45(1): 35-40.
[13] 田伟兵,李爱芬,韩文成.水分对煤层气吸附解吸的影响[J].煤炭学报,2017,42(12):3196. TIAN Weibing, LI Aifen, HAN Wencheng. Effect of water content on adsorption/desorption of coalbed methane[J]. Journal of China Coal Society, 2017, 42(12): 3196.
[14] 李永,林柏泉,杨凯,等.注热蒸汽后的煤体微观孔裂隙演化规律[J].煤炭科学技术,2019,47(12):102. LI Yong, LIN Baiquan, YANG Kai, et al. Evolution law of microscopic pore fractures of coal after hot steam injection[J]. Coal Science and Technology, 2019, 47(12): 102.
[15] 李惟慷,杨新乐,张永利,等.饱和蒸汽作用下煤体吸附甲烷运移产量规律试验研究[J].煤炭学报,2018, 43(5):1343. LI Weikang, YANG Xinle, ZHANG Yongli, et al. Experimental study on migration yield law of coal-bed methane under the condition of saturated steam[J]. Journal of China Coal Society, 2018, 43(5): 1343.
[16] 王兆丰,苏伟伟,陈向军,等.含瓦斯煤自然吸水渗吸试验研究及机理探析[J].煤炭科学技术,2015,43(8):72-76. WANG Zhaofeng, SU Weiwei, CHEN Xiangjun, et al. Experimental study and mechanism analysis on natural water absorption and imbibition test of gas-bearing coal[J]. Coal Science and Technology, 2015, 43(8): 72-76.
[17] 孙亮,贾男,杨兴.原煤与型煤的孔隙结构与气体渗透特性的关系[J].煤矿安全,2022,53(3):24-30. SUN Liang, JIA Nan, YANG Xing. Relationship between pore structure and gas permeability of raw coal and briquette coal[J]. Safety in Coal Mines, 2022, 53(3): 24-30.
[18] 蔡建超,郁伯铭.多孔介质自发渗吸研究进展[J].力学进展,2012,42(6):735-754. CAI Jianchao, YU Boming. Advances in studies of spontaneous imbibition in porous media[J]. Advances in Mechanics, 2012, 42(6): 735-754.
-
期刊类型引用(0)
其他类型引用(1)
计量
- 文章访问数: 61
- HTML全文浏览量: 4
- PDF下载量: 39
- 被引次数: 1