• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

[Bmim][Bf4]和硝酸协同效应对煤体微细观结构的影响

杨晓国, 郝军, 温永瓒

杨晓国, 郝军, 温永瓒. [Bmim][Bf4]和硝酸协同效应对煤体微细观结构的影响[J]. 煤矿安全, 2022, 53(12): 8-14.
引用本文: 杨晓国, 郝军, 温永瓒. [Bmim][Bf4]和硝酸协同效应对煤体微细观结构的影响[J]. 煤矿安全, 2022, 53(12): 8-14.
YANG Xiaoguo, HAO Jun, WEN Yongzan. [Bmim][Bf4] and nitric acid synergistic effect on microstructure of coal[J]. Safety in Coal Mines, 2022, 53(12): 8-14.
Citation: YANG Xiaoguo, HAO Jun, WEN Yongzan. [Bmim][Bf4] and nitric acid synergistic effect on microstructure of coal[J]. Safety in Coal Mines, 2022, 53(12): 8-14.

[Bmim][Bf4]和硝酸协同效应对煤体微细观结构的影响

[Bmim][Bf4] and nitric acid synergistic effect on microstructure of coal

  • 摘要: 为了研究咪唑基离子液体在硝酸中的协同效应,首先利用硝酸(HNO3)溶液,1-丁基-3-甲基咪唑四氟硼酸盐([Bmim][Bf4])溶液及其混合溶液分别处理煤样,然后通过接触角实验测试各溶液的润湿性能,最后通过扫描电镜实验观测各溶液处理后煤样的孔隙-裂隙损伤。研究发现:单一溶液和复合溶液对煤样的润湿性和孔隙结构影响很大,复合溶液的协同效应使得煤中含氧官能团增加,煤样的芳香结构更加紧密,这和接触角的实验结果相同,复合溶液的煤尘接触角最小;另外通过扫描电镜对煤样表面的观察发现,相比单一溶液处理的煤样,协同效应下煤样的渗流网络通道更加发育,大量的次生裂隙沟通了渗流孔道。通过在余吾煤矿的工程实践中发现,经过压裂的钻孔瓦斯体积分数提高20%以上,瓦斯流量提高了1倍以上。
    Abstract: In order to study the synergistic effect of imidazole based ionic liquids in nitric acid, the coal samples were firstly treated with nitric acid(HNO3) solution, 1-butyl-3-methylimidazoletetrafluoroborate([Bmim][Bf4]) solution and its mixed solution respectively. Then the wettability of each solution was tested by contact angle experiment. Finally, the pore-crack damage of coal samples after each solution treatment was observed by scanning electron microscope experiment. The results found that single solution and composite solution have a great influence on the wettability and pore structure of coal samples, and the synergistic effect of composite solution increases the oxygen-containing functional groups in coal and makes the aromatic structure of coal samples more compact. This result is the same as the experimental result of contact angle, and the contact angle of coal dust in composite solution is the smallest. In addition, through the observation of coal sample surface by scanning electron microscope, it is found that the seepage network channel of coal sample under the synergistic effect is more developed than that of coal sample treated with single solution. In the engineering practice of Yuwu Coal Mine, the gas volume fraction of the borehole is increased by more than 20%, the gas flow rate increased by more than one times.
  • [1] 杜伟,孙哲,赵春阳,等.2018年我国能源供应形势分析[J].煤炭经济研究,2019,39(7):10-14.

    DU Wei, SUN Zhe, ZHAO Chunyang, et al. Analysis of China’s energy supply situation in 2018[J]. Coal Economic Research, 2019, 39(7): 10-14.

    [2] 秦永胜,荣海峰.能源利用现状与分析[J].科技创新与应用,2019(22):41-42.
    [3] 《中国煤炭》杂志社专题策化编组.煤炭是保障国民经济持续较快发展的重要能源支撑——煤炭工业壮丽70年综合评述[J].中国煤炭,2019,45(10):5-9.

    Coal is the important energy support to ensure the sustained and rapid development of the national economy—A comprehensive review of the magnificence of the coal industry in the past 70 years[J]. China Coal, 2019, 45(10): 5-9.

    [4] 刘炎杰.低渗透煤储层酸化改造实验研究[D].焦作:河南理工大学,2016:18-20.
    [5] 赵博,文光才,孙海涛,等.煤岩渗透率对酸化作用响应规律的试验研究[J].煤炭学报,2017,42(8):2019.

    ZHAO Bo, WEN Guangcai, SUN Haitao, et al. Experimental study on response law of permeability of coal to acidification[J]. Journal of China Coal Society, 2017, 42(8): 2019.

    [6] ZHANG Lanjun, LI Zenghua, YANG Yongliang, et al. Effect of acid treatment on the characteristics and structures of high-sulfur bituminous coal[J]. Fuel, 2016, 184: 418-429.
    [7] Balucan Reydick D, Turner Luc G, Steel Karen M. X-ray μCT investigations of the effects of cleat demineralization by HCl acidizing on coal permeability[J]. Journal of Natural Gas Science and Engineering, 2018, 55: 206-218.
    [8] HAN Weibo, ZHOU Gang, ZHANG Qingtao, et al. Experimental study on modification of physicochemical characteristics of acidified coal by surfactants and ionic liquids[J]. Fuel, 2020, 266: 116966.
    [9] QIN Lei, ZHAI Cheng, XU Jizhao, et al. Evolution of the pore structure in coal subjected to freeze thaw using liquid nitrogen to enhance coalbed methane extraction[J]. Journal of Petroleum Science and Engineering, 2019, 175: 129-139.
    [10] 沈冰洁,黄婕,曹银平,等.低温氧化过程中煤的宏观特性与微观结构变化[J].华东理工大学学报,2021, 47(1):17-25.

    SHEN Bingjie, HUANG jie, CAO Yinping, et al. Macroscopic characteristics and microstructure change of coal during low temperature oxidation[J]. Journal of East China University of Science and Technology, 2021, 47(1): 17-25.

    [11] 倪冠华.复合酸化压裂过程中瓦斯微观动力学特性及液相滞留机制研究[D].徐州:中国矿业大学,2015:28-35.
    [12] LIANG Tianbo, Sofiane H Achour, Longoria R A, et al. Flow physics of how surfactants can reduce water blocking caused by hydraulic fracturing in low permeability reservoirs[J]. Journal of Petroleum Science and Engineering, 2017, 157: 631-642.
    [13] XIE Hongchao, NI Guanhua, LI Shang, et al. The influence of surfactant on pore fractal characteristics of composite acidized coal[J]. Fuel, 2019, 253: 741-753.
    [14] SUN Wenjibin, ZUO Yujun, WU Zhonghu, et al. Fractal analysis of pores and the pore structure of the Lower Cambrian Niutitang shale in northern Guizhou province: Investigations using NMR, SEM and image analyses[J]. Marine and Petroleum Geology, 2019, 99: 416-428.
    [15] JIANG Jingyu, YANG Weihua, CHENG Yuanping, et al. Molecular structure characterization of middle-high rank coal via XRD, Raman and FTIR spectroscopy: Implications for coalification[J]. Fuel, 2019, 239: 559.
    [16] 胡志权.酸性离子液体预处理后胜利褐煤和木质素的热解行为研究[D].马鞍山:安徽工业大学,2015: 41-43.
    [17] LI Shang, NI Guanhua, NIE Baisheng, et al. Microstructure characteristics of lignite under the synergistic effect of oxidizing acid and ionic liquid[Bmim][Cl][J]. Fuel, 2021, 289: 119940.
计量
  • 文章访问数:  51
  • HTML全文浏览量:  0
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 发布日期:  2022-12-19

目录

    /

    返回文章
    返回