钻孔瓦斯抽采效果影响因素的响应面分析
Response surface analysis of influencing factors of borehole gas extraction effect
-
摘要: 为了探究不同因素对钻孔瓦斯抽采效果的影响,进行了试验矿区地应力现场测试,建立了煤体基质裂隙系统瓦斯运移理论模型;基于现场数据构建数值模型,研究不同抽采条件下的有效抽采半径变化规律;采用响应曲面法,分析不同因素的交互作用及对有效抽采半径的影响,得到各因素与有效抽采半径的响应曲面模型。结果表明:煤层初始渗透率对抽采半径的影响程度最大,抽采时间、抽采负压和钻孔孔径的影响程度依次变小;响应曲面模型显著性较好,决定系数为0.995 7;煤层初始渗透率与抽采时间的响应曲面扭曲程度最大,说明两者对抽采半径的交互影响显著;抽采时间与抽采负压的响应曲面扭曲程度最小,说明两者的交互影响作用最不显著。Abstract: In order to investigate influence of different factors on borehole gas drainage performance, in-situ stress field test in targeted mining area was carried out. The theoretical model of gas migration in coal matrix fracture system was established, and numerical model was constructed based on field data to simulate change of effective extraction radius under different extraction conditions. Response surface method was used to analyze effect of interaction of different factors on effective extraction radius. Response surface model between each factor and effective extraction radius was obtained. Results show that initial permeability of coal seam has the greatest influence on extraction radius, while the effect of drainage time, drainage negative pressure and borehole diameter decreases in turn. The response surface model has good significance, while the determination coefficient is 0.995 7. Response surface of coal seam initial permeability and extraction time has the largest distortion degree, which indicates that interaction effect of those two parameters on extraction radius is obvious. In contrast, response surface distortion of extraction time and extraction negative pressure is the smallest, indicating that the interaction effect of them is the least significant.
-
-
[1] 谢和平,吴立新,郑德志.2025年中国能源消费及煤炭需求预测[J].煤炭学报,2019,44(7):1949-1960. XIE Heping, WU Lixin, ZHENG Dezhi. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society, 2019, 44(7): 1949-1960.
[2] 谢和平,任世华,谢亚辰,等.碳中和目标下煤炭行业发展机遇[J].煤炭学报,2021,46(7):2197-2211. XIE Heping, REN Shihua, XIE Yachen. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society, 2021, 46(7): 2197-2211.
[3] 袁亮.深部采动响应与灾害防控研究进展[J].煤炭学报,2021,46(3):716-725. YUAN Liang. Research progress of mining response and disaster prevention and control in deep coal mines[J]. Journal of China Coal Society, 2021, 46(3): 716-725.
[4] 刘鹏,景江波,魏卉子,等.基于时空约束的瓦斯事故知识库构建及预警推理[J].煤炭科学技术,2020,48(7):262-273. LIU Peng, JING Jiangbo, WEI Huizi, et al. Construction of knowledge base and early warning inference of gas accident based on time-space constraints[J]. Coal Science and Technology, 2020, 48(7): 262-273.
[5] 郭欣,李克文,令狐建设,等.瓦斯有效抽采半径影响因素的数值模拟研究[J].煤炭技术,2021,40(5):119-122. GUO Xin, LI Kewen, LINGHU Jianshe, et al. Numerical study on influencing factors of effective drainage radius of gas[J]. Coal Technology, 2021, 40(5): 119-122.
[6] 徐刚,张剀文,范亚飞.叠加效应影响下钻孔有效抽采半径的数值模拟及布孔间距优化[J].矿业安全与环保,2021,48(1):91. XU Gang, ZHANG Kaiwen, FAN Yafei. Numerical simulation of effective drainage radius and optimization of hole spacing under the influence of stack effect[J]. Mining Safety & Environmental Protection, 2021, 48(1): 91.
[7] 陈月霞,褚廷湘,陈鹏.不同数量钻孔瓦斯抽采有效区域数值模拟分析[J].矿业安全与环保,2021,48(5):23-27. CHEN Yuexia, CHU Tingxiang, CHEN Peng. Numerical simulation analysis of effective gas drainage area in different number of drillings[J]. Mining Safety & Environmental Protection, 2021, 48(5): 23-27.
[8] 张天军,庞明坤,蒋兴科,等.负压对抽采钻孔孔周煤体瓦斯渗流特性的影响[J].岩土力学,2019,40(7):2517-2524. ZHANG Tianjun, PANG Mingkun, JIANG Xingke, et al. Influence of negative pressure on gas percolation characteristics of coal body in perforated drilling hole[J]. Rock and Soil Mechanics, 2019, 40(7): 2517-2524.
[9] 江明泉,康向涛,鄢朝兴,等.正断层影响下顺层钻孔有效抽采半径研究[J].工矿自动化,2022,48(2):55. JIANG Mingquan, KANG Xiangtao, YAN Chaoxing, et al. Study on effective extraction radius of bedding borehole under the impact of normal fault[J]. Industry and Mine Automation, 2022, 48(2): 55.
[10] 李守瑞,王正帅,陈广喜.艾维尔沟矿区综合法确定有效抽采半径技术研究[J].煤炭技术,2022,41(1):115-117. LI Shourui, WANG Zhengshuai, CHEN Guangxi. Study on technology of determining effective extraction radius by comprehensive method in Aiweiergou Mining Area[J]. Coal Technology, 2022, 41(1): 115-117.
[11] 刘殿平,马文伟.瓦斯抽采钻孔有效抽采半径测定方法研究[J].工矿自动化,2020,46(11):59-64. LIU Dianping, MA Wenwei. Research on determination method of effective drainage radius of gas drainage borehole[J]. Industry and Mine Automation, 2020, 46(11): 59-64.
[12] KONG Xiangguo, WANG Enyuan, LIU Xiaofei, et al. Coupled analysis about multi-factors to the effective influence radius of hydraulic flushing: Application of response surface methodology[J]. Journal of Natural Gas Science and Engineering, 2016, 32: 538-548. [13] FANG Huihuang, ZHENG Chunshan, QI Ning, et al. Coupling mechanism of THM fields and SLG phases during the gas extraction process and its application in numerical analysis of gas occurrence regularity and effective extraction radius[J]. Petroleum Science, 2022, 19(3): 990-1006. [14] 徐刚,刘超,金洪伟.抽采过程中含瓦斯煤渗透率动态变化特征[J].煤炭技术,2017,36(3):159-162. XU Gang, LIU Chao, JIN Hongwei. Dynamic variation characteristics of permeability of coal containing gas in process of extraction[J]. Coal Technology, 2017, 36(3): 159-162.
[15] 张村,屠世浩,袁永,等.卸压瓦斯抽采的工作面推进速度敏感性分析[J].采矿与安全工程学报,2017,34(6):1240-1248. ZHANG Cun, TU Shihao, YUAN Yong, et al. Sensitivity analysis of longwall panel advancing rate on extraction of pressure relief gas[J]. Journal of Mining & Safety Engineering, 2017, 34(6): 1240-1248.
[16] 张飞,尚玮炜,罗华贵,等.煤层钻孔瓦斯抽采有效半径影响因素分析[J].矿业安全与环保,2022,49(2):137-142. ZHANG Fei, SHANG Weiwei, LUO Huagui, et al. Analysis on influential factors of effective radius of gas extraction from coal seam borehole[J]. Mining Safety & Environmental Protection, 2022, 49(2): 137-142.
[17] Warren J E, Root P J. The Behavior of Naturally Fractured Reservoirs[J]. Society of Petroleum Engineers Journal, 1963, 3(3): 245-255. [18] 刘清泉,褚鹏,黄文怡,等.瓦斯脱附扩散迟滞压力及双重孔隙煤体窜流函数[J].煤炭学报,2022,47(2): 870-882. LIU Qingquan, CHU Peng, HUANG Wenyi, et al. Gas desorption-diffusion hysteresis pressure and the matrix-fracture mass transfer function of dual-porosity coal[J]. Journal of China Coal Society, 2022, 47(2): 870-882.
[19] SAGHAFI A, FAIZ M, ROBERTS D. CO2 storage and gas diffusivity properties of coals from Sydney Basin, Australia[J]. International Journal of Coal Geology, 2007, 70(1/3): 240-254. [20] 曹新奇,辛海会,徐立华,等.瓦斯抽放钻孔有效抽放半径的测定[J].煤炭工程,2009(9):88-90. CAO Xinqi, XIN Haihui, XU Lihua, et al. Measurement on effective drainage radius of gas drainage borehole[J]. Coal Engineering, 2009(9): 88-90.
计量
- 文章访问数: 44
- HTML全文浏览量: 0
- PDF下载量: 7