• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

基于云服务的煤矿防突信息管理系统

朱墨然

朱墨然. 基于云服务的煤矿防突信息管理系统[J]. 煤矿安全, 2022, 53(11): 103-108.
引用本文: 朱墨然. 基于云服务的煤矿防突信息管理系统[J]. 煤矿安全, 2022, 53(11): 103-108.
ZHU Moran. Coal mine outburst prevention information management system based on cloud service[J]. Safety in Coal Mines, 2022, 53(11): 103-108.
Citation: ZHU Moran. Coal mine outburst prevention information management system based on cloud service[J]. Safety in Coal Mines, 2022, 53(11): 103-108.

基于云服务的煤矿防突信息管理系统

Coal mine outburst prevention information management system based on cloud service

  • 摘要: 针对目前煤矿防突信息管理过程中存在的数据质量差、管理效率低、数据分析缺失等问题,研发了基于云服务的煤矿防突信息管理系统。通过改造DGC、WTC和开发统一的数据接口,实现防突预测数据的自动上传,提高工作效率和数据的可靠性;通过设计防突表单引擎,实现了防突表单的自动生成和自助调整;通过开发防突图形引擎,实现了防突钻孔布置图、巷道煤岩分布的自动生成;通过设计防突信息审批工作流,实现了防突信息的云审批,提升信息流转效率;通过设计数据分析引擎,实现了数据的可视化展示和异常数据识别;通过防突信息管理系统移动APP的开发,实现了防突管理移动化全天候服务,实现异常信息自动推送。系统采用B/S+C/S架构,具有跨平台、跨区域等优点,适应防突信息管理的需求,实现了“矿井防突内容全覆盖、过程全包含、时间全天候”,同时为煤矿安全监督管理提供技术支撑。系统在贵州盘江集团响水煤矿成功建设应用,应用结果表明:系统较传统防突信息管理方式能节省70%的时间,大幅提高防突信息的管理效率。
    Abstract: In order to solve the problems existing in the process of coal mine anti-outburst information management, such as poor data quality, low management efficiency and lack of data analysis, an anti-outburst information management system based on cloud service is developed. Through the transformation of DGC and WTC and the development of a unified data interface, the automatic upload of anti-outburst prediction data is realized, and the work efficiency and data reliability are improved. Through the design of anti-outburst form engine, the automatic generation and self-adjustment of anti-outburst form are realized. Through the development of anti-outburst graphics engine, the automatic generation of anti-outburst drilling hole layout map and roadway coal and rock distribution are realized. The cloud examination and approval of anti-outburst information is realized by designing the examination and approval workflow of anti-outburst information, and the efficiency of information flow is improved; the visual display of data and the identification of abnormal data are realized by designing a data analysis engine; through the development of mobile APP of anti-outburst information management system, mobile all-weather service of anti-outburst management is realized, and abnormal information is pushed automatically. The system adopts B/S+C/S architecture, has the advantages of cross-platform and cross-region, meets the needs of outburst prevention information management, realizes “full coverage of mine outburst prevention content, full inclusion of process, all-weather time”, and provides technical support for coal mine safety supervision and management. The system has been successfully applied in Xiangshui Coal Mine of Panjiang Group, Guizhou Province. The application results show that the system can save 70% of the time compared with the traditional anti-outburst information management mode, and greatly improve the management efficiency of anti-outburst information.
  • [1] 孙东玲.推动瓦斯防治全过程信息化智能化[N].中国煤炭报,2020-05-09.
    [2] 国家煤矿安全监察局.防治煤与瓦斯突出细则[M].北京:煤炭工业出版社,2019.
    [3] 梁国栋,郭建.我国煤矿瓦斯事故原因统计分析[J].能源与环保,2018,40(11):75-78.

    LIANG Guodong, GUO Jian. Statistical analysis of coal mine gas accidents in China[J]. China Energy and Environmental Protection, 2018, 40(11): 75-78.

    [4] 程远平,刘洪永,赵伟.我国煤与瓦斯突出事故现状及防治对策[J].煤炭科学技术,2014,42(6):15-18.

    CHENG Yuanping, LIU Hongyong, ZHAO Wei. Status and prevention countermeasures of coal and gas outburst accidents in China[J]. Coal Science and Technology, 2014, 42(6): 15-18.

    [5] 徐雪战.矿井防突信息预测装备体系与应用效果[J].煤矿安全,2020,51(12):100-104.

    XU Xuezhan. Mine outburst prevention information prediction equipment system and its application effect[J]. Safety in Coal Mines, 2020, 51(12): 100-104.

    [6] 宋志强,张士岭.动态防突智能预警系统建设及应用[J].煤炭技术,2020,39(11):68-70.

    SONG Zhiqiang, ZHANG Shiling. Construction and application of dynamic anti-outburst intelligent early warning system[J]. Coal Technology, 2020, 39(11): 68-70.

    [7] 蒲阳,刘文杰.突出参数无线传输及信息化管理技术研究[J].中国矿业,2020,29(8):86-90.

    PU Yang, LIU Wenjie. Research on wireless transmission and information management technology of outstanding parameters[J]. China Mining Industry, 2020, 29(8): 86-90.

    [8] 蒲阳,宁小亮.煤与瓦斯突出防治信息化管理系统构建[J].矿业安全与环保,2020,47(3):45-48.

    PU Yang, NING Xiaoliang. Technology research on wireless transmission and information management of gas outburst parameters[J]. Mining Safety & Environmental Protection, 2020, 47(3): 45-48.

    [9] 谈国文,高原.基于信息化的煤与瓦斯突出防治动态管理及分析技术[J].煤矿安全,2015,46(7):235.

    TAN Guowen, GAO Yuan. Dynamic management and analysis technology of coal and gas outburst prevention and control based on informatization[J]. Safety in Coal Mines, 2015, 46(7): 235.

    [10] 黄磊,刁勇,李明建,等.煤矿防突信息管理系统设计[J].西南大学学报(自然科学版),2013,35(2):148.

    HUANG Lei, DIAO Yong, LI Mingjian, et al. Design of outburst prevention information management system in coal mine[J]. Journal of Southwest University(Natural Science Edition), 2013, 35(2): 148.

    [11] 王国法,杜毅博,任怀伟,等.智能化煤矿顶层设计研究与实践[J].煤炭学报,2020,45(6):1909.

    WANG Guofa, DU Yibo, REN Huaiwei, et al. Top level design and practice of smart coal mines[J]. Journal of China Coal Society, 2020, 45(6): 1909.

    [12] 王国法,刘峰,庞义辉,等.煤矿智能化——煤炭工业高质量发展的核心技术支撑[J].煤炭学报,2019,44(2):349-357.

    WANG Guofa, LIU Feng, PANG Yihui, et al. Coal mine intellectualization: The core technology of high quality development[J]. Journal of China Coal Society, 2019, 44(2): 349-357.

    [13] 毛善君,刘孝孔,雷小锋,等.智能矿井安全生产大数据集成分析平台及其应用[J].煤炭科学技术,2018, 46(12):169.

    MAO Shanjun, LIU Xiaokong, LEI Xiaofeng, et al. Research and application on big data integration analysis platform for intelligent mine safety production[J]. Coal Science and Technology, 2018, 46(12): 169.

    [14] 谭章禄,马营营.煤炭大数据研究及发展方向[J].工矿自动化,2018,44(3):49-52.

    TAN Zhanglu, MA Yingying. Research on coal big data and its developing direction[J]. Industry and Mine Automation, 2018, 44(3): 49-52.

    [15] 黄启江,陆宏东,贾少毅,等.煤矿安全生产信息集成智能手机管理系统设计[J].煤炭科学技术,2015,43(11):101.

    HUANG Qijiang, LU Hongdong, JIA Shaoyi, et al. Design on management system of intelligent mobile phone with mine safety production information integration[J]. Coal Science and Technology, 2015, 43(11): 101.

    [16] 郝亚男,乔钢柱,谭瑛.面向OCR文本识别词错误自动校对方法研究[J].计算机仿真,2020,37(9):333.

    HAO Yanan, QIAO Gangzhu, TAN Ying. The research on the automatic proofreading method of word errors in OCR recognizied text[J]. Computer Simulation, 2020, 37(9): 333.

    [17] 王学梅.OCR文字识别系统的应用[J].现代信息科技,2019,3(18):66-68.

    WANG Xuemei. Application of OCR text recognition system[J]. Modern Information Technology, 2019, 3(18): 66-68.

    [18] 丁小欧,于晟健,王沐贤,等.基于相关性分析的工业时序数据异常检测[J].软件学报,2020,31(3):726.

    DING Xiaoou, YU Chengjian, WANG Muxian, et al. Anomaly detection on industrial time series based on correlation analysis[J]. Journal of Software, 2020, 31(3): 726.

  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  34
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 1
出版历程
  • 发布日期:  2022-11-19

目录

    /

    返回文章
    返回