TDLAS气体检测技术研究现状及其在煤矿中的应用
Research current situation of TDLAS gas detection technology and its application in coal mine
-
摘要: 可调谐二极管激光吸收光谱(TDLAS)气体检测技术具有分辨率高、检测下限低和响应速度快的特点,已广泛应用于环境气体的在线监测。煤矿井下气体成分复杂,传统的气体传感器、色谱分析和光谱分析技术受限于方法本身或现场环境条件,存在不同程度的局限性。介绍了TDLAS气体检测技术的工作原理和特点;重点剖析了TDLAS技术在消防、石油化工、环保和煤矿气体检测领域的发展历程和研究现状;分析了该技术在井下甲烷气体检测和多种分混合气体在线监测等方面的应用效果。Abstract: The characteristics of tunable diode laser absorption spectroscopy (TDLAS) gas detection technology are high resolution, low detection limit and fast response speed, it has been widely used in on-line monitoring of ambient gases. The gas composition is complex in coal mines. Traditional gas sensors, chromatographic analysis and spectroscopic analysis techniques are limited by the method itself or the environmental conditions on site, and there are different degrees of limitations. Firstly, we introduced the working principles and characters of TDLAS gas detection technology. Secondly, the development process and research status of TDLAS technology in the fields of fire protection, petrochemical, environmental protection and coal mine gas detection are focused on analyzed. Finally, the application effect of this technology in downhole methane gas detection and online monitoring of multiple mixed gases is analyzed.
-
Keywords:
- TDLAS technology /
- mine fire prediction /
- coal mine gas /
- online monitoring /
- quantitative analysis
-
-
[1] 王德明.煤矿热动力灾害学[M].北京:科学出版社,,2018. [2] 梁运涛,田富超,冯文彬,等.我国煤矿气体检测技术研究进展[J].煤炭学报,2021,46(6):1701-1714. LIANG Yuntao, TIAN Fuchao, FENG Wenbin, et al. Research progress of coal mine gas detection technology in China[J]. Journal of China Coal Society, 2021, 46(6): 1701-1714.
[3] 张志荣,董凤忠,吴边,等.基于TDLAS方法的高温管道温度与氧气浓度测量机理研究[C]//中国光学学会2010年光学大会论文集. 北京:中国光学学会,2010:3266-3271. [4] 屈东胜,洪延姬,王广宇,等.基于TDLAS的非均匀流场温度分布的测量[J].现代电子技术,2013(12):21. QU Dongsheng, HONG Yanji, WANG Guangyu, et al. TDLAS-based detection for temperature distribution of non-uniform flow field[J]. Modern Electronics Technique, 2013(12): 21.
[5] 张亮,刘建国,阚瑞峰,等.基于可调谐半导体激光吸收光谱技术的高速气流流速测量方法研究[J].物理学报,2012,61(3):226-232. ZHANG Liang, LIU Jianguo, KAN Ruifeng, et al. On the methodology of measuring high-speed flows using tunable diode laser absorption spectroscopy[J]. Acta Physica Sinica, 2012, 61(3): 226-232.
[6] 祝玉泉,张永明,张启兴,等.基于TDLAS的火灾气体探测系统研制[J].火灾科学,2007(3):128-132. ZHU Yuquan, ZHANG Yongming, ZHANG Qixing, et al. Design of a fire gas detection system with tunable diode laser absorption spectroscopy[J]. Fire Safety Science, 2007(3): 128-132.
[7] 蒋亚龙,祝玉泉,王进军.可调谐半导体激光吸收光谱技术用于火灾探测——初步试验[J].自然灾害学报,2011,20(1):56-61. JIANG Yalong, ZHU Yuquan, WANG Jinjun. Application of tunable diode laser absorption spectroscopy to fire detection: preliminary experiment[J]. Journal of Natural Disasters, 2011, 20(1): 56-61.
[8] 张佳薇,张红丽,李明宝.基于TDLAS早期森林火灾检测系统[J].森林工程,2013,29(2):139-142. ZHANG Jiawei, ZHANG Hongli, LI Mingbao. TDLAS-based early-stage forest fire detection system[J]. Forest Engineering, 2013, 29(2): 139-142.
[9] 侯月,黄克谨,于冠一,等.基于红外TDLAS技术的高精度CO2同位素检测系统的研制[J].红外与激光工程,2021,50(4):73-77. HOU Yue, HUANG Kejin, YU Guanyi, et al. Development on high precision CO2 isotope measurement system based on infrared TDLAS technology[J]. Infrared and Laser Engineering, 2021, 50(4): 73-77.
[10] 孙鹏帅,张志荣,李俊,等.开放式天然气泄漏甲烷气体检测技术研究[J].光学与光电技术,2016,14(5):62-67. SUN Pengshuai, ZHANG Zhirong, LI Jun, et al. Research on natural gas leakage monitoring technology based on the open-path measurement technique of methane[J]. Optics & Optoelectronic Technology, 2016, 14(5): 62-67.
[11] 高彦伟,张玉钧,陈东,等.可调谐二极管激光吸收光谱氟化氢检测[J].光子学报,2015,44(6):125-130. GAO Yanwei, ZHANG Yujun, CHEN Dong, et al. Laser absorption spectroscopy for detection of hydrogen fluoride using tunable diode laser[J]. Acta Photonica Sinica, 2015, 44(6): 125-130.
[12] 李仲,詹徽,罗圣洁,等.天然气中H2S在线分析TDLAS技术的应用前景[J].石油与天然气化工,2021, 50(4):120-123. LI Zhong, ZHAN Hui, LUO Shengjie, et al. Application prospect of TDLAS technology for online analysis of natural gas[J]. Chemical Engineering of Oil & Gas, 2021, 50(4): 120-123.
[13] 喻洪波,何海律,靳伟,等.连续波调频技术复用的光纤气体多点传感系统[J].激光杂志,2001,22(2):45-47. YU Hongbo, HE Hailv, JIN Wei, et al. Optical fiber gases sensing array with frequency modulated continuous wave technique[J]. Laser Journal, 2001, 22(2): 45-47.
[14] 董凤忠,阚瑞峰,刘文清,等.可调谐二极管激光吸收光谱技术及其在大气质量监测中的应用[J].量子电子学报,2005(3):315-325. DONG Fengzhong, KAN Ruifeng, LIU Wenqing, et al. Tunable diode laser absorption spectroscopic technology and its applications in air quality monitoring[J]. Chinese Journal of Quantum Electronics, 2005(3): 315-325.
[15] 郭红.基于光声光谱技术的混合气体实时检测[D].武汉:华中科技大学,2018. [16] 唐靖.基于光腔衰荡光谱的痕量气体高灵敏检测技术[D].成都:电子科技大学,2019. [17] 石锦涛.基于TDLAS技术的高精度有毒有害气体的浓度检测技术研究[D].成都:电子科技大学,2019. [18] 戴童欣,王彪,连厚泉,等.用于TDLAS二氧化碳检测系统的光电探测电路设计[J].激光杂志,2021,42(4):41-45. DAI Tongxin, WANG Biao, LIAN Houquan, et al. Development of photoelectric detection circuit for TDLAS CO2 gas detection system[J]. Laser Journal, 2021, 42(4): 41-45.
[19] 潘卫东.基于TDLAS的痕量乙烯气体检测技术研究[D].哈尔滨:哈尔滨工业大学,2013. [20] 吴兵,雷柏伟,彭燕,等.JSG4井下型火灾束管监测系统的开发[J].矿业安全与环保,2013,40(5):48. WU Bing, LEI Baiwei, PENG Yan, et al. Development of JSG4 underground bundle tube fire monitoring system[J]. Mining Safety & Environmental Protection, 2013, 40(5): 48.
[21] 冯文彬.矿用激光光谱多参数灾害气体分析检测装置[J].煤矿安全,2015,46(4):100-102. FENG Wenbin. Multi-parameter disaster gas analysis and detection device of mine-used laser spectrum[J]. Safety in Coal Mines, 2015, 46(4): 100-102.
[22] 徐春梅,刘先勇,袁长迎,等.激光光声光谱法测量煤矿瓦斯气体的研究[J].压电与声光,2006(6):643. XU Chunmei, LIU Xianyong, YUAN Changying, et al. Study on measuring gas in coal mine by laser photoacoustic spectroscopy[J]. Piezoelectrics & Acoustooptics, 2006(6): 643.
[23] 胡洋,吴秋遐,张延炜,等.激光纹影技术在煤矿瓦斯爆燃研究中的应用[J].煤矿安全,2021,52(5):66. HU Yang, WU Qiuxia, ZHANG Yanwei, et al. Application of laser schlieren technology in the study of gas deflagration in coal mines[J]. Safety in Coal Mines, 2021, 52(5): 66.
[24] 魏超,童敏明,任子晖,等.基于激光气体分析的矿井火灾预警装置[J].软件,2011,32(4):77-78. WEI Chao, TONG Minming, REN Zihui, et al. Mine fire alarm system based on the analysis of laser gas[J]. Software, 2011, 32(4): 77-78.
[25] 魏玉宾.光纤气体传感器及其安全工程应用中的关键技术研究[D].济南:山东大学,2016. [26] 杜京义,殷聪,王伟峰,等.基于TDLAS的痕量CO浓度检测系统及温压补偿[J].光学技术,2018,44(1):19-24. DU Jingyi, YIN Cong, WANG Weifeng, et al. Detection system of trace CO based on TDLAS and temperature and pressure compensation[J]. Optical Technique, 2018, 44(1): 19-24.
[27] 王前进,孙鹏帅,张志荣,等.混合气体测量中重叠吸收谱线交叉干扰的分离解析方法[J].物理学报,2021,70(14):233-242. WANG Qianjin, SUN Pengshuai, ZHANG Zhirong, et al. Study on the separation and analysis method of over lapping absorption spectrums with cross interference in gas mixture measurement[J]. Acta Physica Sinica, 2021, 70(14): 233-242.
[28] 郭二孩.GJG10J激光传感器在煤矿井下瓦斯监控系统中的应用[J].机械管理开发,2018,33(12):145. GUO Erhai. Application of GJG10J laser sensor in coal mine gas monitoring system[J]. Mechanical Management and Development, 2018, 33(12): 145.
[29] 鲁喜辉,路培超,刘杰,等.分布式激光甲烷监控装置在葫芦素煤矿的应用[J].煤矿安全,2017,48(12):94-96. LU Xihui, LU Peichao, LIU Jie, et al. Application of Distributed laser methane monitoring device in Hulusu Coal Mine[J]. Safety in Coal Mines, 2017, 48(12): 94-96.
[30] 吉平.JSG4红外束管监测系统在神东矿区的应用[J].煤矿安全,2017,48(S1):59-62. JI Ping. Application of JSG4 infrared beam tube monitoring system in Shendong mining area[J]. Safety in Coal Mines, 2017, 48(S1): 59-62.
[31] 杜建华,陈永涛,孙勇.JSG5自然发火束管监测系统在鲁西煤矿的应用[J].煤炭技术,2018,37(8):146. DU Jianhua, CHEN Yongtao, SUN Yong. Application of JSG5 spontaneous combustion beam tube monitoring system in Luxi coal mine[J]. Coal Technology, 2018, 37(8): 146-149.
[32] 安韬儒,姚囝.基于TDLAS的KJ428型束管监测系统应用研究[J].煤炭技术,2022,41(1):155-158. AN Taoru, YAO Nan. Application research of KJ428 beam tube monitoring system based on TDLAS[J]. Coal Technology, 2022, 41(1): 155-158.
[33] 谢巧军,刘杰.分布式激光火情监控系统在寸草塔二矿的应用[J].陕西煤炭,2019,38(3):102-105. XIE Qiaojun, LIU Jie. Application of distributed laser fire monitoring system in Cuncaota coal mine[J]. Shaanxi Coal, 2019, 38(3): 102-105.
[34] 蒋栋,常立华,周鹏.JSG6(N)型火灾束管监测系统在梅花井煤矿的集中控制应用[J].内蒙古煤炭经济,2020(5):132-133. JIANG Dong, CHANG Lihua, ZHOU Peng. Application of JSG6(N)fire beam tube monitoring system in Meihuajing coal mine[J]. Inner Mongolia Coal Economy. 2020(5): 132-133.
-
期刊类型引用(14)
1. 王印松,谢蕊馨,孔庆梅,高建强. 基于TDLAS的CO检测系统调制参数优化与温度补偿. 光学技术. 2024(01): 81-87 . 百度学术
2. 于庆,张华乾,郭清华. 煤矿氧气检测高精度VCSEL驱动及温控电路设计. 矿业安全与环保. 2024(02): 153-160 . 百度学术
3. 陈新玉,陈红岩. 改善的LMS自适应算法在TDLAS甲烷检测的降噪研究. 激光杂志. 2024(05): 79-85 . 百度学术
4. 李忠奎,李起伟,黄增波. 基于激光气体检测技术的甲烷传感器设计. 工矿自动化. 2024(S1): 110-114 . 百度学术
5. 彭燕,矫雷子,郑培超,董大明,邢振. 基于WMS的可调谐半导体激光器驱动与温控电路设计. 激光杂志. 2024(07): 29-35 . 百度学术
6. 李志福. 抗电磁干扰技术在煤矿安全中的应用. 中国战略新兴产业. 2024(14): 154-156 . 百度学术
7. 赵波,巫鹏航,赵贵龙. 在线甲烷分析仪在管道内甲烷含量监测中的应用探究. 城市燃气. 2024(07): 9-12 . 百度学术
8. 邹永洺,王银辉,田富超. 基于GA-BP优化模型的红外CO分析仪温度补偿研究. 煤矿安全. 2024(09): 60-70 . 本站查看
9. 申晓良,胡澜夕,高炎旭,林列. 基于TDLAS技术的井下多组分气体浓度监测(特邀). 光子学报. 2024(10): 114-123 . 百度学术
10. 李志福. 基于GA-BP激光甲烷检测压力补偿方法的研究. 煤矿机电. 2024(04): 1-5 . 百度学术
11. 王彪,高源辰,房思超,秦莉. 基于STM32H743的TDLAS型CH_4气体检测数据采集系统设计. 激光杂志. 2024(12): 45-48 . 百度学术
12. 李起伟,李忠奎,陈建桥. 基于Wi-SUN的煤矿井下火灾监测及模糊分析方法研究. 工矿自动化. 2024(S2): 47-52 . 百度学术
13. 王彪,杨子腾,卞广雨,王冠懿,赵奕飞,薛金波,程林祥. 基于深度学习算法的原位激光CO_2检测系统研制. 激光杂志. 2023(06): 48-52 . 百度学术
14. 张华乾,于庆. 基于小波阈值函数降噪的实时煤矿氧气检测数据误差处理. 煤矿机电. 2023(06): 28-32+37 . 百度学术
其他类型引用(6)
计量
- 文章访问数: 51
- HTML全文浏览量: 3
- PDF下载量: 13
- 被引次数: 20