准南区块煤层气井排采阶段储层伤害及其控制
Coalbed methane reservoir damage and its control in the drainage stage of a block in southern Junggar Basin
-
摘要: 针对准南区块煤层气低产井在排采阶段的储层伤害,结合室内实验,系统分析了区内典型煤层气井的排采情况,探讨了煤层气井排采阶段储层伤害类型及其防控方法。结果表明:研究区排采阶段储层伤害类型主要包括应力敏感、速敏和水锁伤害,而煤储层力学强度低、压裂液不当、排采强度过高是造成这些伤害的重要原因;在排采阶段,基于“连续、缓慢、稳定”的原则,增大压降漏斗,并保持流体流速在微粒启动流速之下,有助于3类储层伤害的防治;在储层改造阶段,采用低表面张力、强润湿性的低伤害压裂液,能够促使微粒快速沉降、积聚,并且显著降低孔隙毛管压力,进而抑制储层速敏与水锁伤害;同时,通过围岩改造煤储层,有助于减缓应力敏感伤害。Abstract: Aiming at the reservoir damage of low-yield coalbed methane wells in Junggar Basin block during the drainage stage, in this paper, the drainage situation of typical coalbed methane wells in the block is systematically analyzed and reservoir damage types and prevention and control methods of coalbed methane wells in the drainage stage are discussed. The results show that the main types of reservoir damage at the drainage stage in the study area include stress sensitivity, velocity sensitivity and water lock damage. The low mechanical strength of coal reservoirs, improper fracturing fluid, and high drainage intensity are the important reasons for these damages. During the drainage stage of CBM wells, drainage is carried out according to the “continuous, slow and stable” guidelines, increasing the expansion range of the pressure drop funnel and keeping the fluid flow rate below the particle start flow rate will help prevent the three types of reservoir damage. In addition, the use of low-damage fracturing fluid with low surface tension and strong wettability can promote the rapid sedimentation and aggregation of particles. The pore capillary pressure is significantly reduced in the reservoir in the reconstruction stage, thereby inhibiting reservoir velocity sensitivity and water blocking damage. Meanwhile, the coal reservoir is retrofitted by surrounding rock, which helps to reduce the impact of stress-sensitive damage on the production of coalbed methane.
-
-
[1] WANG Ke, ZHANG Jianjun, CAI Bofeng, et al. Emission factors of fugitive methane from underground coal mines in China: Estimation and uncertainty[J]. Applied Energy, 2019, 250(1): 273-282. [2] 桑树勋,王冉,周效志,等.论煤地质学与碳中和[J].煤田地质与勘探,2021,49(1):1. SANG Shuxun, WANG Ren, ZHOU Xiaozhi, et al. Review on carbon neutralization associated with coal geology[J]. Coal Geology & Exploration, 2021, 49(1): 1.
[3] 徐凤银,王勃,赵欣,等.“双碳”目标下推进中国煤层气业务高质量发展的思考与建议[J].中国石油勘探,2021,26(3):9-18. XU Fengyin, WANG Bo, ZHAO Xin, et al. Thought and suggestions on promoting high quality development of China’s CBM business under the goal of “double carbon”[J]. China Petroleum Exploration, 2021, 26(3): 9-18.
[4] 宋金星,于世耀,苏现波.煤储层速敏伤害机理及防速敏试验研究[J].煤炭科学技术,2018,46(6):173. SONG Jinxing, YU Shiyao, SU Xianbo. Study on velocity sensitivity damage mechanism and its proof test of coal reservoir[J]. Coal Science and Technology, 2018, 46(6): 173.
[5] 田博凡,康永尚,刘娜,等.滇东-黔西煤层气井排采动态影响因素及初始排水速度优化步骤[J].煤炭学报,2018,43(6):1716-1727. TIAN Bofan, KANG Yongshang, LIU Na. Influencing factors of drainage dynamics of CBM wells and primary drainage rate optimization in East Yunnan-Western Guizhou area[J]. Journal of China Coal Society, 2018, 43(6): 1716-1727.
[6] 胡海洋,赵凌云,陈捷,等.发耳矿区煤储层敏感性对煤层气排采影响及控制对策[J].煤炭科学技术,2020,48(7):334-340. HU Haiyang, ZHANG Linyun, CHEN Jie, et al. Influence of coal reservoir sensitivity on CBM drainage and control strategy in Faer Mining Area[J]. Coal Science and Technology, 2020, 48(7): 334-340.
[7] 孟召平,侯安琪,张鹏,等.沁水盆地典型煤矿区煤的流速敏感性实验及控制机理[J].煤炭学报,2017,42(10):2649-2656. MENG Zhaoping, HOU Anqi, ZHANG Peng, et al. Experimental study on flow rate sensitivity of coal in typical coal mining area of Qinshui Basin and its control mechanism[J]. Journal of China Coal Society, 2017, 42(10): 2649-2656.
[8] 冯青.煤层气井低产伤害诊断方法及应用[J].煤田地质与勘探,2019,47(1):86-91. FENG Qing. Method and application of diagnosis of low productivity damage of CBM wells[J]. Coal Geology & Exploration, 2019, 47(1): 86-91.
[9] 郭春华,周文,孙晗森,等.考虑应力敏感性的煤层气井排采特征[J].煤田地质与勘探,2011,39(5):27. GUO Chunhua, ZHOU Wen, SUN Hansen, et al. The relationship between stress sensitivity and production of coalbed methane wells[J]. Coal Geology & Exploration, 2011, 39(5): 27.
[10] 孟召平,张纪星,刘贺,等.考虑应力敏感性的煤层气井产能模型及应用分析[J].煤炭学报,2014,39(4):593-599. MENG Zhaoping, ZHANG Jixing, LIU He, et al. Productivity model of CBM wells considering the stress sensitivity and its application analysis[J]. Journal of China Coal Society, 2014, 39(4): 593-599.
[11] 刘春花,刘新福,周超.煤层气井排采过程中煤粉运移规律研究[J].煤田地质与勘探,2015,43(5):23. LIU Chunhua, LIU Xinfu, ZHOU Chao. Migration patterns of coal powder in coal reservoirs during the well drainage[J]. Coal Geology & Exploration, 2015, 43(5): 23-26.
[12] WEI Yingchun, LI Chao, CAO Daiyong, et al. The effects of particle size and inorganic mineral content on fines migration in fracturing proppant during coalbed methane production[J]. Journal of Petroleum Science and Engineering, 2019, 182: 106355. [13] 段品佳,王芝银,翟雨阳,等.煤层气排采初期阶段合理降压速率的研究[J].煤炭学报,2011,36(10):1689-1692. DUAN Pinjia, WANG Zhiyin, ZHAI Yuyang, et al. Research on reasonable depressurization rate in initial stage of exploitation to coal bed methane[J]. Journal of China Coal Society, 2011, 36(10): 1689-1692.
[14] TAO Shu, TANG Dazhen, XU Hao, et al. Fluid velocity sensitivity of coal reservoir and its effect on coalbed methane well productivity:a case of Baode Block, northeastern Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2017, 152: 29-237. [15] 胡秋嘉,毛崇昊,石斌,等.沁水盆地南部高煤阶煤层气井“变速排采-低恒套压”管控方法[J].煤炭学报,2019,44(6):1795-1803. HU Qiujia, MAO Chonghao, SHI Bin, et al. “Variable speed drainage-low casing pressure” control method of high rank CBM wells in South Qinshui Basin[J]. Journal of China Coal Society, 2019, 44(6): 1795-1803.
[16] LU Yi, LI He, LU Jiexin, et al. Clean up water blocking damage in coalbed methane reservoirs by microwave heating: Laboratory studies[J]. Process Safety and Environmental Protection, 2020, 138: 292-299. [17] 宋金星,陈培红,王乾.煤储层水基压裂液用表面活性剂的筛选实验[J].煤田地质与勘探,2017,45(6):79-83. SONG Jinxing, CHEN Peihong, WANG Qing. Laboratory study on screening and optimizing surfactant of water-based fracturing fluid for coalbed methane reservoir[J]. Coal Geology & Exploration, 2017, 45(6): 79-83.
[18] 王乾.淮北某区块煤层气井二次改造关键技术[D].焦作:河南理工大学,2017:36-38. [19] 魏迎春,崔茂林,张劲,等.煤层气开发中不同粒度煤粉的聚集沉降实验[J].煤田地质与勘探,2020,48(5):40-47. WEI Yingchun, CUI Maolin, ZHANG Jin, et al. Aggregation and sedimentation experiments of coal fines with different particle size during CBM development[J]. Coal Geology & Exploration, 2020, 48(5): 40-47.
[20] SU Xianbo, WANG Qing, SONG Jingxing, et al. Experimental study of water blocking damage on coal[J]. Journal of Petroleum Science and Engineering, 2017, 156: 654-661. [21] 苏现波,马耕,宋金星,等.煤系气储层缝网改造技术及应用[M].北京:科学出版社,2017:55-57. [22] 丁述基.达西及达西定律[J].水文地质工程地质,1986(3):37-39. [23] 苏现波,宋金星,郭红玉,等.煤矿瓦斯抽采增产机制及关键技术[J].煤炭科学技术,2020,48(12):1-30. SU Xianbo, SONG Jinxing, GUO Hongyu, et al. Inc-erasing production mechanism and key technology of gas extraction in coal mines[J]. Coal Science and Technology, 2020, 48(12): 1-30.
[24] LIU Haihong, LI Yuxing, WANG Wuchang. A theoretical study of the liquid bridge force between natural gas hydrate particles[J]. Natural Gas Industry, 2013, 33(4): 109-113. -
期刊类型引用(4)
1. 任峻杉,张洲,邢丽茹,余婉莹,王鹏翔,邹强,杨正滔. 沁水盆地柿庄南区块煤层气井煤粉产出特征及控制机理研究. 煤矿安全. 2025(02): 67-74 . 本站查看
2. 胡皓,孔鹏,刘广景,张亚飞,张晓飞,张锦涛,任峻杉,张洲. 煤层气井筒单相流阶段煤粉动态沉降规律. 煤矿安全. 2025(02): 81-86 . 本站查看
3. 李盈. “三调法”治理大庆沙河子组低产气井实例分析. 西部探矿工程. 2024(05): 42-44 . 百度学术
4. 白杨,王路一,李翔,窦幻君,罗平亚. 煤层气储层保护钻井液技术研究进展. 天然气工业. 2024(10): 182-194 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 55
- HTML全文浏览量: 0
- PDF下载量: 5
- 被引次数: 4