基于随机森林与支持向量机的回采工作面瓦斯涌出量预测方法
Prediction method of gas emission based on random forest and support vector machine
-
摘要: 针对当前回采工作面瓦斯涌出量预测方法选取不合理及预测精度不佳问题,借助机器学习方法对其展开研究,以交叉验证法处理现有数据,构建了支持向量回归模型与随机森林回归预测模型,并对输入数据降维前后2种模型的预测表现进行了对比分析。测试表明:经交叉验证及数据降维后2种预测模型趋于稳定、预测精度均有大幅提高,SVR模型的整体预测性能稍优于RFR模型,SVR模型每轮测试耗时约0.015 s,远低于后者;筛选后的SVR模型平均绝对误差约为0.18 m3/min,平均相对误差约3.26%,优于RFR预测模型;建立的回采工作面瓦斯涌出量预测模型均表现良好,经随机森林筛选的SVR预测模型耗时较短、误差较小、稳定性更好,可实现对瓦斯涌出量的有效预测,对简化数据采集工作及科学制定瓦斯防治措施起到参考作用。Abstract: In order to solve the problems of unreasonable selection of prediction methods and poor prediction accuracy for gas emission in mining face, with the help of machine learning methods, in this paper, existing data was processed through cross-validation, the support vector and the random forest algorithm were used to construct the prediction model and the prediction performance of the two models before and after dimensionality reduction of the input data were compared and analyzed. The test shows that after cross-validation and data dimensionality reduction, the two prediction models tend to be stable, and the prediction accuracy are greatly improved. The overall prediction performance of the SVR model is slightly better than that of the RFR model; SVR model takes about 0.015 s per round of testing, much lower than the latter one; the average absolute error of the SVR model is about 0.18 m3/min, and the average relative error is about 3.26%, which is relatively better than the other one. The models established in this paper both present good performance, and the SVR model after feature screening by random forest takes less time, has less error and better stability, which effectively realizes the prediction of the gas emission and plays a reference role in simplifying data collection and scientifically formulating gas control measures.
-
-
[1] 周世宁,林柏泉.煤矿瓦斯动力灾害防治理论及控制技术[M].北京:科学出版社:2007:1-14. [2] 秦冰,郝建峰,梁冰,等.煤与瓦斯共采非线性约束多变量时空协同优化模型[J].煤炭学报,2019,44(S2):593-600. QIN Bing,HAO Jianfeng,LIANG Bing. et al. Influence of mining activities on mine rockmass and control engineering[J]. Journal of China Coal Society, 2019, 44(S2): 593-600.
[3] 王艳晖,李国勇,王炳萱.MFOA-SVM在采煤工作面瓦斯涌出量预测中的应用[J].矿业安全与环保,2016, 43(2):54-58. WANG Yanhui, LI Guoyong, WANG Bingxuan. Application of MFOA-SVM in coalface gas emission prediction[J]. Mining Safety & Environmental Protection, 2016, 43(2): 54-58.
[4] 董晓雷,贾进章,白洋,等.基于SVM耦合遗传算法的回采工作面瓦斯涌出量预测[J].安全与环境学报,2016,16(2):114-118. DONG Xiaolei, JIA Jinzhang, BAI Yang, et al. Prediction for gas-gushing amount from the working face of stope based on the SVM coupling genetic algorithm[J]. Journal of Safety and Environment. 2016, 16(2): 114-118.
[5] 王生全,刘柏根,井津,等.矿井瓦斯涌出量建模预测[J].西安科技大学学报,2010,30(3):271-274. WANG Shengquan, LIU Baigen, JING Jin, et al. Prediction of mine gas emission quantity[J]. Journal of Xi’an University of Science and Technology, 2010, 30(3): 271-274.
[6] 崔鸿雁,徐帅,张利锋,等.机器学习中的特征选择方法研究及展望[J].北京邮电大学学报,2018,41(1):1-12. CUI Hongyan, XU Shuai, ZHANG Lifeng, et al. The key techniques and future vision of feature selection in machine learning[J]. Journal of Beijing University of Posts and Telecommunications, 2018, 41(1): 1-12.
[7] 李树刚,马彦阳,林海飞,等.基于因子分析法的瓦斯涌出量预测指标选取[J].西安科技大学学报,2017, 37(4):461-466. LI Shugang, MA Yanyang, LIN Haifei, et al. Selection of gas emission prediction index based on factor analysis[J]. Journal of Xi’an University of Science and Technology, 2017, 37(4): 461-466.
[8] 卢国斌,康晋恺,白刚,等.PCA-BP在回采工作面瓦斯涌出量预测中的应用[J].辽宁工程技术大学学报(自然科学版),2015,34(12):1329-1334. LU Guobin, KANG Jinkai, BAI Gang, et al. Application of PCA and BP to gas emission prediction of mining working face[J]. Journal of Liaoning Technical University(Natural Science), 2015, 34(12): 1329-1334.
[9] 付华,赵俊程,付昱,等.基于量子粒子群与深度学习的煤矿瓦斯涌出量软测量[J].仪器仪表学报,2021, 42(4):160-168. FU Hua, ZHAO Juncheng, FU Yu, et al. Soft measurement of coal mine gas emission based on quantum-behaved particle swarm optimization and deep learning[J]. Chinese Journal of Scientific Instrument, 2021, 42(4): 160-168.
[10] 吴奉亮,霍源,高佳南.基于随机森林回归的煤矿瓦斯涌出量预测方法[J].工矿自动化,2021,47(8):102-107. WU Fengliang, HUO Yuan, GAO Jianan. Coal mine gas emission prediction method based on random forest regression[J]. Industry and Mine Automation, 2021, 47(8): 102-107.
[11] 汪明,王建军.基于随机森林的回采工作面瓦斯涌出量预测模型[J].煤矿安全,2012,43(8):182-185. WANG Ming, WANG Jianjun. Gas emission prediction model of stope based on random forests[J]. Safety in Coal Mines, 2012, 43(8): 182-185.
[12] 王鹏新,齐璇,李俐,等.基于随机森林回归的玉米单产估测[J].农业机械学报,2019,50(7):237-245. WANG Pengxin, QI Xuan, LI Li, et al. Estimation of maize yield based on random forest regression[J]. Tran-sactions of the Chinese Society for Agricultural Machinery, 2019, 50(7): 237-245.
[13] 李欣海.随机森林模型在分类与回归分析中的应用[J].应用昆虫学报,2013,50(4):1190-1197. LI Xinhai. Using “random forest” for classifycation and regression[J]. Chinese Journal of Applied Entomology, 2013, 50(4): 1190-1197.
[14] 邢晓语,杨秀春,徐斌,等.基于随机森林算法的草原地上生物量遥感估算方法研究[J].地球信息科学学报,2021,23(7):1312-1324. XING Xiaoyu, YANG Xiuchun, XU Bin, et al. Remote sensing estimation of grassland above ground biomass based on random forest[J]. Journal of Geoinformation Science, 2021, 23(7): 1312-1324.
[15] 宋建国,高强山,李哲.随机森林回归在地震储层预测中的应用[J].石油地球物理勘探,2016,51(6):1202-1211. SONG Jianguo, GAO Qiangshan, LI Zhe. Application of random forests for regression to seismic reservoir prediction[J]. Oil Geophysical Prospecting, 2016, 51(6): 1202-1211.
[16] 杨威,李维刚,赵云涛,等.基于随机森林的钢材性能预报与影响因素筛选[J].钢铁,2018,53(3):44-49. YANG Wei, LI Weigang, ZHAO Yuntao, et al. Mechanical property prediction of steel and influence factors selection based on random forests[J]. Iron and Steel, 2018, 53(3): 44-49.
[17] 霍娟,孙晓伟,张明杰.电力负荷预测算法比较-随机森林与支持向量机[J].电力系统及其自动化学报,2019,31(7):129-134. HUO Juan, SUN Xiaowei, ZHANG Mingjie. Comparison between power load forecasting algorithms based on random forest and support vector machine[J]. Proceedings of the CSU-EPSA, 2019, 31(7): 129-134.
[18] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. [19] 朱红青,常文杰,张彬.回采工作面瓦斯涌出BP神经网络分源预测模型及应用[J].煤炭学报,2007(5):504-508. ZHU Hongqing, CHANG Wenjie, ZHANG Bin. Different-source gas emission prediction model of working face based on BP artificial neural network and its application[J]. Journal of China Coal Society, 2007(5): 504-508.
[20] 付华,谢森,徐耀松,等.基于ACC-ENN算法的煤矿瓦斯涌出量动态预测模型研究[J].煤炭学报,2014, 39(7):1296-1301. FU Hua, XIE Sen, XU Yaosong, et al. Gas emission dynamic prediction model of coal mine based on ACC-ENN algorithm[J]. Journal of China Coal Society, 2014, 39(7): 1296-1301.
[21] 张新生,蔡宝泉.基于改进随机森林模型的海底管道腐蚀预测[J].中国安全科学学报,2021,31(8):69. ZHANG Xinsheng, CAI Baoquan. Corrosion prediction of submarine pipelines based on improved random forest model[J]. China Safety Science Journal, 2021, 31(8): 69.
计量
- 文章访问数: 24
- HTML全文浏览量: 0
- PDF下载量: 5