浸水风干烟煤微观结构及自燃升温特性实验研究
Experimental study on microstructure and heating characteristics of water-soaked and air-dried bituminous coal
-
摘要: 为研究浸水风干烟煤的微观结构及自燃升温特性,选取陕西省某煤矿烟煤煤样,利用低温液氮吸附仪与热重分析仪,对浸泡30、60、90 d后25 ℃恒温干燥72 h的煤样和原煤样进行比表面积、孔体积和热重-微商热重的试验测试,探索长期浸水风干作用对烟煤物理特性变化及自燃升温过程活化能变化特征的影响机制。结果表明:随着浸水时间的增加,煤样的比表面积和总孔体积发生了变化;浸泡90 d干燥后,微孔对比表面积和总孔体积的贡献占比最大,且贡献占比大于其他孔径段,推测该煤样浸水90 d干燥后,煤氧反应速率越快,煤自燃倾向性更大;升温过程中,不同浸水时间煤样的特征阶段温度差和特征温度点变化不同;在燃烧失重阶段,煤体内部所蓄积的能量释放,使得活化能随着浸水时间的增加越来越低。Abstract: In order to study the microstructure and heating characteristics of water-soaked air-dried bituminous coal, the bituminous coal samples from a coal mine in Shaanxi Province were selected. Using low temperature liquid nitrogen adsorption instrument and thermogravimetric analyzer, the specific surface area, pore volume and thermogravimetric and derivative thermogravimetric tests were carried out on the coal samples soaked for 30 days, 60 days and 90 days and raw coal samples after constant temperature drying at 25 ℃ for 72 h. The influence mechanism of long-term soaking and air-drying on the physical characteristics and activation energy of bituminous coal during heating process was explored. The results show that the specific surface area and total pore volume of coal samples change with the increase of soaking time. After soaking for 90 days and drying, the contribution proportion of micropore contrast surface area and total pore volume was the largest, and the contribution proportion was larger than that of other pore sizes. It is speculated that the coal sample soaked in water for 90 days after drying, the faster the coal oxygen reaction rate, the higher the coal spontaneous combustion tendency. In the process of heating up, the characteristic temperature difference and characteristic temperature point change of coal samples at different soaking time are different.
-
-
[1] 邓军,李贝,王凯,等.我国煤火灾害防治技术研究现状及展望[J].煤炭科学技术,2016,44(10):1-7. DENG Jun, LI Bei, WANG Kai, et al. Research status and outlook on prevention and control technology of coal fire disaster in China[J]. Coal Science and Technology, 2016, 44(10): 1-7.
[2] 牛会永,刘轶康,聂琦苗,等.浸水加温条件下煤电性参数特征试验研究[J].中国安全科学学报,2020,30(9):37-42. NIU Huiyong, LIU Yikang, NIE Qimiao, et al. Experimental study on characteristics of coal electrical parameters under water immersion and heating[J]. China Safety Science Journal, 2020, 30(9): 37-42.
[3] 谭波,徐斌,胡明明,等.不同变质程度煤在氧化过程中的表面官能团红外光谱定量分析[J].中南大学学报(自然科学版),2019,50(11):2886-2895. TAN Bo, XU Bin, HU Mingming, et al. FTIR quantitative analysis of surface functional groups in the oxidation process of coal samples with different metamorphic levels[J]. Journal of Central South University(Science and Technology), 2019, 50(11): 2886-2895.
[4] Yu J, Tahmasebi A, Han Y, et al. A review on water in low rank coals: the existence, interaction with coal structure and effects on coal utilization[J]. Fuel Processing Technology, 2013, 106: 9-20. [5] Z?譈BRIK A, HREDZ K S, NIOVTUR, et al. Distributionof inorganic and organic substances in the hydrocyclone separated Slovak sub-bituminous coal[J]. Fuel, 2010, 89(8): 2126-2132. [6] 王生全,牛建立,刘洋,等.锦界煤矿矿井涌水规律及其控制因素分析[J].煤矿安全.2014,45(2):145-147. WANG Shengquan, NIU Jianli, LIU Yang, et al. Gushing water law and lts control factors analysis of Jinjie coal mine[J]. Safety in Coal Mines, 2014, 45(2): 145.
[7] Nakagawa H, Namba A, B?觟hlmann M, et al. Hydrothermal Dewatering of Brown Coal and Catalytic Hydrothermal Gasification of the Organic Compounds Dissolving in the Water Using a Novel Ni/carbon Catalyst[J]. Fuel, 2004, 83(6): 719-725. [8] 邹友平,吕闰生,杨建.云盖山矿井水中溶解有机质三维荧光光谱特征分析[J].煤炭学报,2012,37(8):1396-1400. ZOU Youping, L?譈 Runsheng, YANG Jian, et al. Three-dimensional excitation emission matrix fluorescence spectroscopic characterization of dissolved organic matter in coal mine water[J]. Journal of China Coal Society, 2012, 37(8): 1396-1400.
[9] 张玉涛,王都霞,仲晓星.水分在煤低温氧化过程中的影响研究[J].煤矿安全,2007,38(11):1. ZHANG Yutao, WANG Duxia, ZHONG Xiaoxing, et al. Study on lnfluence of water on low-temperature oxidation of coal[J]. Safety in Coal Mines, 2007, 38(11): 1.
[10] Norinaga K, Hayashi J, Kudo N, et al. Evaluation of effect of predrying on the porousstructure of water-swollen coal based on the freezing property of pore condensed water[J]. Energy & fuels, 1999, 13(5): 1058-1066. [11] 阚罗.浸水过程对低阶煤低温氧化促进作用的实验研究[D].徐州:中国矿业大学,2019. [12] 黎经雷,牛会永,鲁义,等.风速对近距离煤层采空区漏风及煤自燃影响研究[J].煤炭科学技术,2019,47(3):156-162. LI Jinglei, NIU Huiyong, LU Yi, et al. Study on effect of wind speed to air leakage and spontaneous combustion in goaf of contiguous seams[J]. Coal Science and Technology, 2019, 47(3): 156-162.
[13] 张群,杨锡禄.平衡水分条件下煤对甲烷的等温吸附特性研究[J].煤炭学报,1999,24(6):566-570. ZHANG Qun, YANG Xilu. Lsothermal adsorption of coals on methane under equilibrium moisture[J]. Journal of China Coal Society, 1999, 24(6): 566-570.
[14] 翟小伟,葛晖,王凯,等.水浸干燥作用对煤自燃特性及预测指标影响研究[J].中国安全科学学报,2018, 28(5):68-73. ZHAI Xiaowei, GE Hui, WANG Kai, et al. Research on influences of water soaking-drying on coal spontaneous combustion characteristics and predictive index[J]. China Safety Science Journal, 2018, 28(5): 68.
[15] 聂百胜,何学秋,王恩元,等.煤吸附水的微观机理[J].中国矿业大学学报,2004,33(4):379-383. NIE Baisheng, HE Xueqiu, WANG Enyuan, et al. Micro-mechanism of coal adsorbing water[J]. Journal of China University of Mining & Technology, 2004, 33(4): 379-383.
[16] Hokyung Choi, Chinnasamy Thiruppathiraja, Sangdo Kima, et al. Moisture Readsorption and Low Temperature Oxidation Characteristics of Upgraded Low Rank Coal[J]. Fuel Processing Technology, 2011, 92(10): 2005-2010. [17] 李鑫.浸水风干煤体自燃氧化特性参数实验研究[D].徐州:中国矿业大学,2014. [18] M H Reich, I K Snook, H K Wagenfeld. A Fractal Interpretation of the Effect of Drying on the Pore Structure of Victorian Brown Coal[J]. Fuel, 1992, 71(6): 669-672. [19] 李锋,安世岗,邢真强.水浸煤孔隙结构及自燃特性试验研究[J].煤炭科学技术,2019,47(S2):208. LI Feng, AN Shigang, XING Zhenqiang, et al. Experimental study on pore structure and spontaneous combustion characteristics of submerged coal[J]. Coal Science and Technology, 2019, 47(S2): 208-212.
[20] Sensogut C. Temperature profiles of coal stockpiles[J]. Energy Sources Part A Recovery Utilization and Environmental Effects, 2007, 30(4): 339-348. [21] 邓军,张扬,李成会,等.水浸煤体自燃极限参数和氧化动力学的研究[J].煤炭技术,2016,35(3):152. DENG Jun, ZHANG Yang, LI Chenghui, et al. Research of limit parameters and oxidation kinetics of water-logging coal self-ignition[J]. Coal Technology, 2016, 35(3): 152-154.
[22] 肖旸,王振平,马砺,等.煤自燃指标气体与特征温度的对应关系研究[J].煤炭科学技术,2008,36(6):47-51. XIAO Yang, WANG Zhenping, MA Li, et al. Research on correspondence relationship between coal spontaneous combustion index gas and feature temperature[J]. Coal Science and Technology, 2008, 36(6): 47.
[23] 文虎,陆彦博,刘文永.水浸煤二次氧化自燃危险性实验研究[J].矿业安全与环保,2020,47(3):6-11. WEN Hu, LU Yanbo, LIU Wenyong, et al. Experimental study on the risk of secondary oxidation spontaneous combustion of water immersed coal[J]. Mining Safety & Environmental Protection, 2020, 47(3): 6.
[24] Huiyong NIU, Yikang LIU, Kui WU, et al. Study on pore structure change characteristics of water-immersed and air-dried coal based on SEM-BET[J]. Combustion Science and Technology, 2022: 1-23. [25] 秦波涛,王德明,李增华,等.以活化能的观点研究煤炭自燃机理[J].中国安全科学学报,2005,15(1):11-13. QIN Botao, WANG Deming, LI Zenghua, et al. Study on the mechanism of coal spontaneous combustion with activated energy view[J]. China Safety Science Journal, 2005, 15(1): 11-13.
[26] 徐长富.水浸煤自燃宏观特征及防治技术研究[D].北京:中国矿业大学(北京),2015. [27] 乔玲,邓存宝,张勋,等.浸水对煤氧化活化能和热效应的影响[J].煤炭学报,2018,43(9):2518-2524. QIAO Ling, DENG Cunbao, ZHANG Xun, et al. Effect of soaking on coal oxidation activation energy and thermal effect[J]. Journal of China Coal Society, 2018, 43(9): 2518-2524.
计量
- 文章访问数: 91
- HTML全文浏览量: 0
- PDF下载量: 60