• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

采动影响下底板隐伏小断层突水灾变规律研究

冯宇, 林志斌, 王文贞

冯宇, 林志斌, 王文贞. 采动影响下底板隐伏小断层突水灾变规律研究[J]. 煤矿安全, 2022, 53(8): 200-209.
引用本文: 冯宇, 林志斌, 王文贞. 采动影响下底板隐伏小断层突水灾变规律研究[J]. 煤矿安全, 2022, 53(8): 200-209.
FENG Yu, LIN Zhibin, WANG Wenzhen. Research on water inrush disaster law from coal mine floor with concealed small fault under mining[J]. Safety in Coal Mines, 2022, 53(8): 200-209.
Citation: FENG Yu, LIN Zhibin, WANG Wenzhen. Research on water inrush disaster law from coal mine floor with concealed small fault under mining[J]. Safety in Coal Mines, 2022, 53(8): 200-209.

采动影响下底板隐伏小断层突水灾变规律研究

Research on water inrush disaster law from coal mine floor with concealed small fault under mining

  • 摘要: 为研究采动影响下底板隐伏小断层的突水灾变规律,以赵固一矿16001工作面为背景,在考虑岩体渗透系数以及孔隙率随体积应变变化的基础上,对采动过程中围岩的剪应力、位移、塑性区、涌水量等进行了分析,研究了隐伏小断层导水性以及水压对工作面突水灾变的影响规律。结果表明:隐伏小断层向工作面内突水具有较大的滞后性以及突发性,只有当采面超过隐伏小断层24 m后,工作面底板剪切裂隙带才能与隐伏小断层连通形成导水裂隙通道,使工作面底板涌水量由2.9 m3/h直接跃至46.6 m3/h;隐伏小断层导水性较差情况下,底板围岩在采动影响下的剪切屈服带不会发育至断层顶部,也不会诱发隐伏小断层活化突水;隐伏小断层水压越高,工作面底板剪切屈服带向隐伏小断层方向扩展延伸的尺度就越大,当达到临界值时,两者就会贯通形成导水裂隙通道。
    Abstract: In order to study the water inrush catastrophic law of the coal mine floor with concealed small fault under the influence of mining, the 16001 working face of Zhaogu No.1 Coal Mine is taken as the background, and the changes in the permeability coefficient and porosity of the rock mass with the volumetric strain are considered, and the shear stress of the surrounding rock during the mining process is considered. On this basis, the influence of concealed fault water conductivity and water pressure on the law of water inrush catastrophe of working face is studied. The research results show that the water inrush from the concealed small fault has a large hysteresis and suddenness in the working face. Only when the working face exceeds the concealed small fault by 24 m, the shear fissure zone of the working face floor can connect with the concealed small fault to form a water-conducting fissure channel, the floor water inflow of the working face can be directly jumped from 2.9 m3/h to 46.6 m3/h. When the water conductivity of the concealed small fault is poor, the shear yield zone of the floor surrounding rock under mining will not develop to the top of the fault and will not induce concealed faults to activate water inrush; the higher the hydraulic pressure of the concealed fault, the larger the scale of the working face floor shear yield zone extending toward the concealed fault. When the critical value is reached, the two will penetrate to form a water-conducting fissure channel.
  • [1] 张自政,李树清,于宪阳,等.深井穿断层回采巷道围岩变形机理与稳定控制对策[J].湖南科技大学学报(自然科学版),2020,35(1):10-16.

    ZHANG Zizheng, LI Shuqing, YU Xianyang, et al. Deformation mechanism and stability control of surrounding rock in deep roadway through the fault[J]. Journal of Hunan University of Science & Technology(Natural Science Edition), 2020, 35(1): 10-16.

    [2] 郝长胜,徐仁,尹旭,等.多断层构造应力下回采巷道围岩破坏特征及控制技术研究[J].煤炭技术,2019,38(7):18-21.

    HAO Changsheng, XU Ren, YIN Xu, et al. Study on failure characteristics and control techniques of surrounding rock in mining roadway under multi-fault tectonic stress[J]. Coal Technology, 2019, 38(7): 18-21.

    [3] 陈文云.穿断层破碎带巷道围岩破坏特征及其控制[J].煤矿现代化,2020(1):111-113.

    CHEN Wenyun. The failure characteristics and control of roadway surrounding rock in fault rupture zone[J]. Coal Mine Modernization, 2020(1): 111-113.

    [4] 刘伟韬,赵吉园,丁希阳.断层突水温度-非线性渗流-应力耦合模型研究[J].煤矿安全,2018,49(11):59.

    LIU Weitao, ZHAO Jiyuan, DING Xiyang. Study on temperature-hydrological-mechanical coupling model for fault water inrush[J]. Safety in Coal Mines, 2018, 49(11): 59-62.

    [5] 申秀颀.含煤地层中断层突水机理探讨[J].西安科技大学学报,2013,33(3):259-264.

    SHEN Xiuqi. Water inrush mechanism of faults in coal-bearing strata[J]. Journal of Xi’An University of Science and Technology, 2013, 33(3): 259-264.

    [6] 黄存捍,黄俊杰,李振华.煤层底板隐伏小断层突水数值模拟[J].煤矿安全,2013,44(10):24-26.

    HUANG Cunhan, HUANG Junjie, LI Zhenhua. The water inrush numerical simulation of minor faults concealed in coal seam floor[J]. Safety in Coal Mines, 2013, 44(10): 24-26.

    [7] 陈忠辉,胡正平,李辉,等.煤矿隐伏断层突水的断裂力学模型及力学判据[J].中国矿业大学学报,2011,40(5):673-677.

    CHEN Zhonghui, HU Zhengping, LI Hui, et al. Fracture mechanical model and criteria of insidious fault water inrush in coal mines[J]. Journal of China University of Mining & Technology, 2011, 40(5): 673-677.

    [8] 黄浩,王经明.煤层底板隐伏断层突水的物理实验研究[J].华北科技学院学报,2015,12(1):11-16.

    HUANG Hao,WANG Jingming. Research on water inrush from the blind fault of coal floor by physical experiment[J]. Journal of North China Institute of Science and Technology, 2015, 12(1): 11-16.

    [9] 郭修杰,张明,杨永杰.动压影响下巷道掘进断层突水机理及防治[J].煤炭技术,2015,34(5):199-201.

    GUO Xiujie, ZHANG Ming, YANG Yongjie. Mechanism and controlling of water-inrush from faults under dynamic pressure in roadway drilling[J]. Coal Technology, 2015, 34(5): 199-201.

    [10] 李博,武强,班文韬.掘进巷道富水型断层突水多场灾变演化规律研究[J].煤炭科学技术,2019,47(12):161-167.

    LI Bo, WU Qiang, BAN Wentao. Study on multi-fields catastrophe evolution laws of water inrush from water-rich fault in excavation roadway[J]. Coal Science and Technology, 2019, 47(12): 161-167.

    [11] 慕松利,张二蒙,赵霖,等.赵固二矿工作面断层突水防治技术[J].煤矿安全,2019,50(12):64-68.

    MU Songli, ZHANG Ermeng, ZHAO Lin, et al. comprehensive prevention and control techniques for water inrush from faults in Zhaogu No.2 coalmine[J]. Safety in Coal Mines, 2019, 50(12): 64-68.

    [12] 孙二虎.高分辨率三维地震在煤矿采区解释小断层和陷落柱的研究[D].太原:太原理工大学,2004.
    [13] 丁建新.不同倾角隐伏断层条件下的底板突水模拟研究[J].中国煤炭地质,2021,33(6):47-53.

    DING Jianxin. Simulative study on floor water bursting in conditions of buried fault with different dip angles[J]. Coal Geology of China, 2021, 33(6): 47-53.

    [14] 王进尚,姚多喜,黄浩.煤矿隐伏断层递进导升突水的临界判据及物理模拟研究[J].煤炭学报,2018,43(7):2014-2020.

    WANG Jinshang, YAO Duoxi, HUANG Hao. Critical criterion and physical simulation research on progressive ascending water inrush in hidden faults of coal mines[J]. Journal of China Coal Society, 2018, 43(7): 2014-2020.

    [15] 王环玲,徐卫亚,左婧,等.低渗透岩石渗透率与孔隙率演化规律的气渗试验研究[J].水利学报,2015,46(2):208-216.

    WANG Huanling, XU Weiya, ZUO Jing, et al. Evolution law of the permeability and porosity for low-permeability rock based on gas permeability test[J]. Journal of Hydraulic Engineering, 2015, 46(2): 208-216.

    [16] 张勃阳,白海波,张凯.陷落柱填隙物全应力-应变过程的渗流特性研究[J].采矿与安全工程学报,2016,33(4):734-740.

    ZHANG Boyang, BAI Haibo, ZHANG Kai. Research on permeability characteristics of karst collapse column fillings in complete stress-strain process[J]. Journal of Mining & Safety Engineering, 2016, 33(4): 734-740.

    [17] 经纬,薛维培,姚直书.巷道围岩塑性软化区岩石内摩擦角与黏聚力变化规律[J].煤炭学报,2018,43(8):2203-2210.

    JING Wei, XUE Weipei, YAO Zhishu. Variation of the internal friction angle and cohesion of the plastic softening zone rock in roadway surrounding rock[J]. Journal of China Coal Society, 2018, 43(8): 2203-2210.

    [18] Zhibin Lin, Boyang Zhang, Jiaqi Guo. Analysis of a water-inrush disaster caused by coal seam subsidence karst collapse column under the action of multi-field coupling in Taoyuan coal mine[J]. Computer Modeling in Engineering & Sciences, 2021, 126(1): 311-330.
    [19] 李海琪,冯子军.不同加载方式及速率下石灰岩三轴力学特性研究[J].矿业研究与开发,2020,40(4): 52-56.

    LI Haiqi, FENG Zijun. Study on triaxial mechanical properties of limestone under different loading modes and loading rates[J]. Mining Research and Development, 2020, 40(4): 52-56.

    [20] 杨天鸿,徐涛,刘建新,等.应力-损伤-渗流耦合模型及在深部煤层瓦斯卸压实践中的应用[J].岩石力学与工程学报,2005,24(16):2900-2905.

    YANG Tianhong, XU Tao, LIU Jianxin, et al. Coupling model of stress-damage-flow and its application to the investigation of instantaneous seepage mechanism for gas during unloading in coal seam with depth[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2900-2905.

计量
  • 文章访问数:  41
  • HTML全文浏览量:  0
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 发布日期:  2022-08-19

目录

    /

    返回文章
    返回