• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

结合PS-InSAR和DS-InSAR的韩城矿区采空区地面塌陷识别

张文龙, 张童康, 张帆

张文龙, 张童康, 张帆. 结合PS-InSAR和DS-InSAR的韩城矿区采空区地面塌陷识别[J]. 煤矿安全, 2022, 53(8): 194-199,209.
引用本文: 张文龙, 张童康, 张帆. 结合PS-InSAR和DS-InSAR的韩城矿区采空区地面塌陷识别[J]. 煤矿安全, 2022, 53(8): 194-199,209.
ZHANG Wenlong, ZHANG Tongkang, ZHANG Fan. Identification of ground subsidence in goaf of Hancheng Mining Area based on PS-InSAR and DS-InSAR[J]. Safety in Coal Mines, 2022, 53(8): 194-199,209.
Citation: ZHANG Wenlong, ZHANG Tongkang, ZHANG Fan. Identification of ground subsidence in goaf of Hancheng Mining Area based on PS-InSAR and DS-InSAR[J]. Safety in Coal Mines, 2022, 53(8): 194-199,209.

结合PS-InSAR和DS-InSAR的韩城矿区采空区地面塌陷识别

Identification of ground subsidence in goaf of Hancheng Mining Area based on PS-InSAR and DS-InSAR

  • 摘要: 针对传统InSAR技术在煤矿采空区地表沉陷监测的不足,提出了结合PS-InSAR和DS-InSAR的采煤沉陷区监测方法;主要通过对覆盖韩城矿区的2018年1月—2021年4月的81景Sentienl-1A数据进行干涉处理,并将具有高散射特性的PS点和中散射特性DS点进行了分布提取,增加了稳定相干点的数量,满足了煤矿沉陷区的监测要求;并且将煤矿的工作面位置与InSAR形变范围进行对比。监测结果显示:该矿区存在的12个形变区与韩城矿区12家煤矿井田位置一一对应,12处煤矿采煤区域都发生了采煤沉陷;其中桑树坪、下峪口及象山3个大煤矿的采煤沉陷范围较大,且形变量级较大,其他小煤矿也基本都分布着范围不一的沉陷隐患,龙源煤矿在监测期内地表基本没有形变;韩城矿区最大年平均沉降速率达到了230 mm/a,最大累积沉降量达到了740 mm;InSAR技术可在煤矿采空区地表沉陷识别中发挥一定的作用。
    Abstract: Aiming at the shortcomings of traditional InSAR technology in monitoring surface subsidence in coal mine goaf, a monitoring method for coal mining subsidence combining PS-InSAR and DS-InSAR is proposed. The research mainly conducts interference processing on the Sentienl-1A data of 81 scenes covering Hancheng Mining Area from January 2018 to April 2021, and extracts the distribution of PS points with high scattering characteristics and DS points with medium scattering characteristics. The number of stable coherent points is increased, and the monitoring requirements of the coal mine subsidence area are met. The monitoring results show that the 12 deformation areas in this mining area correspond to the positions of the 12 coal mines in the Hancheng Mining Area one by one, and the comparison of the working face position of the coal mine with the InSAR deformation range shows that mining subsidence has occurred in the coal mining areas of the 12 coal mines. Among them, the three large coal mines, Sangshuping, Xiayukou and Xiangshan, have large coal mining subsidence ranges and large deformation levels. Other small coal mines are basically distributed with hidden dangers of subsidence in different ranges. Longyuan Coal Mine is in the monitoring period, and the surface is basically not deformed. The maximum annual average subsidence rate in Hancheng Mining Area reached 230 mm/a, and the maximum cumulative subsidence amount reached 740 mm, indicating that InSAR technology can play a certain role in the identification of surface subsidence in the goaf area of coal mines, and provide data support for post-mining management of the mining area.
  • [1] 姬怡微,李成,高帅,等.陕西省韩城市地质灾害风险评估[J].灾害学,2018,33(3):194-200.

    JI Yiwei, LI Cheng, GAO Shuai, et al. Risk assessment of geological hazards of Hancheng city in Shaanxi province[J]. Journal of Catastrophology, 2018, 33(3): 194-200.

    [2] 姬怡微,李成,高帅,等.韩城矿区地质灾害发育特征及地质环境治理恢复现状[C]//高强度采矿区地质灾害与防控学术研讨会论文集.武汉:中国地质大学出版社出版,2017:46-53.
    [3] 梁少岗,刘长星,康惟英,等.韩城矿区山区地表滑移规律分析[J].矿山测量,2018,46(2):61-64.

    LIANG Shaogang, LIU Changxing, KANG Weiying, et al. Analysis on the slip law of mountainous surface in Hancheng mining area[J]. Mine Survey, 2018, 46(2): 61-64.

    [4] 孟欣.InSAR技术在韩城矿区形变监测中的应用研究[D].西安:西安科技大学,2019.
    [5] 金艳,高晓雄,胡琼,等.InSAR技术的城市建筑形变风险评估[J].测绘科学,2021,46(10):76-79.

    JIN Yan, GAO Xiaoxiong, HU Qiong, et al. Risk assessment of urban buildings based on InSAR technology[J]. Science of Surveying and Mapping, 2021, 46(10): 76-79.

    [6] Hans N Lechner, Christelle Wauthier, Gregory P Waite, et al. Magma storage and diking revealed by GPS and InSAR geodesy at Pacaya volcano, Guatemala[J]. Bulletin of Volcanology, 2019, 81: 18.
    [7] Jianmin Zhou, Zhen Li, Xiyou Fu, et al. Estimating the mass change of mountain glacier using a novel method based on InSAR observations[J]. Environmental Earth Sciences, 2019, 78: 77.
    [8] 王哲,赵超英,刘晓杰,等.西藏易贡滑坡演化光学遥感分析与InSAR形变监测[J].武汉大学学报(信息科学版),2021,46(10):1569-1578.

    WANG Zhe, ZHAO Chaoying, LIU Xiaojie, et al. Evolution analysis and deformation monitoring of Yigong landslide in Tibet with optical remote sensing and InSAR[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1569-1578.

    [9] Qu Chunyan, Shan Xinjian, Zuo Ronghu, et al. An integrated study on the coseismic and post-seismic deformation of the 2010 Yushu earthquake based on InSAR analysis[J]. Journal of Earth System Science, 2019, 128: 46.
    [10] 杨洁,曾强.D-InSAR技术用于水西沟火区地表沉降的分析[J].矿业安全与环保,2021,48(3):68-73.

    YANG Jie, ZENG Qiang. Analysis of surface subsidence in Shuixigou sealed fire area by using D-InSAR technology[J]. Mining Safety & Environmental Protection, 2021, 48(3): 68-73.

    [11] SU Xiaojun, ZHANG Yi, MENG Xingmin, et al. Landslide mapping and analysis along the China-Pakistan Karakoram Highway based on SBAS-InSAR detection in 2017[J]. Journal of Mountain Science, 2021, 18(10): 2540-2564.
    [12] Ferretti A, Colesanti C, Prati C, et al. Radar permanent scatters identification in urban area: target characterization and sub-pixel analysis[C]//Proceedings of IEEE/ISPRS Joint Workshop 2001:Remote Sensing and Data Fusion over Urban Areas. IEEE, 2001: 985725.
    [13] 芦家欣,汤伏全,赵军仪,等.黄土矿区开采沉陷与地表损害研究述评[J].西安科技大学学报,2019,39(5):859..

    LU Jiaxin, TANG Fuquan, ZHAO Junyi, et al. Review of study on mining subsidence and ground surface damage in loess mining area[J]. Journal of Xi’an University of Science and Technology, 2019, 39(5): 859.

    [14] 李路,洪友堂.改进的SBAS技术在矿区地表沉降监测中的应用[J].测绘科学,2020,45(10):92-101.

    LI Lu, HONG Youtang. Application of improved SABS technology in monitoring mining land subsidence[J]. Science of Surveying and Mapping, 2020, 45(10): 92-101.

    [15] 杨嘉威,谭志祥,邓喀中.基于DS-InSAR的矿区铁路线沉陷监测与规律分析[J].煤炭工程,2021,53(9):143-148.

    YANG Jiawei, TAN Zhixiang, DENG Kazhong. Deformation monitoring and law analysis of railway in mining area based on DS-InSAR[J]. Coal Engineering, 2021, 53(9): 143-148.

    [16] 范锐彦,焦健,高胜,等.InSAR时序分析高相干目标选取方法比较研究[J].地球信息科学学报,2016,18(6):805-814.

    FAN Ruiyan, JIAO Jian, GAO Sheng, et al. Comparison research of high coherent target selection based on insar time series analysis[J]. Journal of Geo-Information Science, 2016, 18(6): 805-814.

    [17] 李德仁,廖明生,王艳.永久散射体雷达干涉测量技术[J].武汉大学学报(信息科学版),2004,29(8):664-668.

    LI Deren, LIAO Mingsheng, WANG Yan. Progress of permanent scatterer interferometry[J]. Geomatics and Information Science of Wuhan University, 2004, 29(8): 664-668.

  • 期刊类型引用(8)

    1. 郑学召,苏海蛟,童鑫,熊艳玲,张心怡. 面向煤矿矿区的InSAR地表形变监测技术研究进展. 测绘通报. 2025(02): 64-70 . 百度学术
    2. 孙超,徐海璐,潘磊. 基于SBAS-InSAR的开采沉陷特征分析. 陕西煤炭. 2024(06): 34-38 . 百度学术
    3. 王史文,王晟,凌炜佳,朱忠华,杨鑫源,沙文忠,杨家宏. 基于无人机航测的自然崩落法采矿地表塌陷规律研究. 黄金科学技术. 2024(04): 654-665 . 百度学术
    4. 徐思瑜,张熠斌,徐誉维,张震屹,宋金红. 基于时序InSAR的长春市九台区煤炭采空区地表沉降监测及时空演化态势分析. 中国煤炭. 2024(08): 212-222 . 百度学术
    5. 魏跃东. 煤矿采空区地面塌陷风险自动预警方法. 自动化应用. 2024(16): 26-29 . 百度学术
    6. 徐思瑜,张熠斌,徐誉维,宋金红. 基于时序InSAR的吉林蛟河矿区地表沉降监测及时空演化态势分析. 世界地质. 2024(04): 574-585+618 . 百度学术
    7. 杨明春. 融合测量技术的自然崩落法采矿地表塌陷规律探讨. 工矿自动化. 2024(S2): 57-59+92 . 百度学术
    8. 刘金霖,谭志祥,范洪冬. 融合DS-InSAR与PIM的煤矿开采影响范围确定方法. 采矿与岩层控制工程学报. 2023(06): 96-104 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  58
  • HTML全文浏览量:  2
  • PDF下载量:  27
  • 被引次数: 14
出版历程
  • 发布日期:  2022-08-19

目录

    /

    返回文章
    返回