• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

冲击地压煤矿井上下微震联合监测技术

杜涛涛

杜涛涛. 冲击地压煤矿井上下微震联合监测技术[J]. 煤矿安全, 2022, 53(7): 92-98.
引用本文: 杜涛涛. 冲击地压煤矿井上下微震联合监测技术[J]. 煤矿安全, 2022, 53(7): 92-98.
Joint monitoring of surface and underground micro-seismic monitoring technology in rockburst coalmine[J]. Safety in Coal Mines, 2022, 53(7): 92-98.
Citation: Joint monitoring of surface and underground micro-seismic monitoring technology in rockburst coalmine[J]. Safety in Coal Mines, 2022, 53(7): 92-98.

冲击地压煤矿井上下微震联合监测技术

Joint monitoring of surface and underground micro-seismic monitoring technology in rockburst coalmine

  • 摘要: 冲击地压煤矿普遍应用井下微震监测系统进行监测预警,但在单一近水平煤层或近直立煤层水平分层开采时,普遍存在由于井下微震台网高差不足导致垂直定位精度不理想的问题,无法有效分析确定冲击致灾关键岩层。以鄂尔多斯矿区某近水平冲击地压煤层开采工作面为例,理论分析了微震定位误差的“垂直高差效应”,研究提出了井上下微震联合监测技术,通过在地面布置专用井上微震拾震器,形成井上下微震监测台网,并在近水平煤层冲击地压矿井应用实践。研究表明:当井下微震传感器布置台网处于近水平状态时,由于垂直最大空隙角过大,造成震源垂直定位误差较大,是微震垂直定位精度不足的主要原因;以ARAMIS M/E微震监测系统为基础,增加ARP专用井上微震拾震器以增大z坐标差距,形成井上下联合监测台网,有效提高了微震监测高度及垂直定位精度。井上下微震联合监测技术在门克庆煤矿应用,揭示了诱发矿震的岩层层位与高度,提升了矿井解决矿震频发的技术水平及采取措施的针对性;红庆河煤矿应用井上下微震联合监测技术,确定了冲击致灾主控岩层层位与高度,揭示了高位厚层顶板冲击致灾性。
    Abstract: Underground micro-seismic monitoring systems are commonly used in rockburst coal mines for monitoring and early warning. However, in a single near-horizontal coal seam or a near-upright coal seam in horizontal slicing mining, the vertical positioning accuracy is generally unsatisfactory due to the insufficient height difference of the underground micro-seismic network, it is impossible to effectively analyze and determine the key rock formations caused by the impact. Taking a near level rockburst coal mining face in Ordos Mining Area as an example, the “vertical height difference effect” of the micro-seismic positioning error is theoretically analyzed, and the joint monitoring technology of surface and underground micro-seismic monitoring is proposed. The special surface micro-seismic pickup is arranged on the ground to form a network of micro-seismic monitoring stations up and down the well, and apply it to mines with rock bursts near horizontal coal seam. The research shows that when the underground micro-seismic sensor network is in a near horizontal state, the source vertical positioning error is large due to thelarge vertical maximum gap angle, which is the main reason for the lack of micro-seismic vertical positioning accuracy. Based on the ARAMIS M/E micro-seismic monitoring system, the ARP special surface micro-seismic pickup is added to increase the z-coordinate gap, forming a joint monitoring station network of surface and underground micro-seismic monitoring, which effectively improves the micro-seismic monitoring height and vertical positioning accuracy. The joint monitoring technology of surface and underground micro-seismic monitoring in Menkeqing Coal Mine reveals the strata level and height that induced mine earthquakes, and improved the mine’s technical level in solving frequent mine earthquakes and the pertinence of measures taken; in Hongqinghe Coal Mine, the joint micro-seismic monitoring technology is applied to determine the location and height of the main control strata of impact disaster, and reveal the impact disaster of high thick roof.
  • [1] 窦林名,何学秋.冲击地压防治理论与技术[M].徐州:中国矿业大学出版社,2001.
    [2] 潘俊锋.煤矿冲击地压启动理论及其成套技术体系研究[J].煤炭学报,2019,44(1):173-182.

    PAN Junfeng. Theory of rockburst start-up and its complete technology system[J]. Journal of China Coal Society, 2019, 44(1):173-182.

    [3] 潘一山.煤矿冲击地压扰动响应失稳理论及应用[J].煤炭学报,2018,43(8):2091-2098.

    PAN Yishan. Disturbance response instability theory of rockburst in coal mine[J]. Journal of China Coal Society,2018,43(8): 2091-2098.

    [4] 张宏伟,朱峰,韩军,等.冲击地压的地质动力条件与监测预测方法[J].煤炭学报,2016,41(3):545-551.

    ZHANG Hongwei, ZHU Feng, HAN Jun, et al. Geological dynamic conditions and forecast technology for rock bursts[J]. Journal of China Coal Society, 2016, 41(3): 545-551.

    [5] 谭云亮,郭伟耀,辛恒奇,等.煤矿深部开采冲击地压监测解危关键技术研究[J].煤炭学报,2019,44(1):160-172.

    TAN Yunliang, GUO Weiyao, XIN Hengqi, et al. Key technology of rock burst monitoring and control in deep coal mining[J]. Journal of China Coal Society, 2019, 44(1): 160-172.

    [6] 齐庆新,李宏艳,潘俊锋,等.冲击矿压防治的应力控制理论与实践[J].煤矿开采,2011,16(3):114-118.

    QI Qingxin, LI Hongyan, PAN Junfeng, et al. Stress control theory and practical of rock-burst prevention[J]. Coal Mining Technology, 2011, 16(3): 114-118.

    [7] 窦林名,李振雷,张敏.煤矿冲击地压灾害监测预警技术研究[J].煤炭科学技术,2016,44(7):41-46.

    DOU Linming, LI Zhenlei, ZHANG Min. Study on monitoring and early warning technology of mine pressure bump disaster[J]. Coal Science and Technology, 2016, 44(7): 41-46.

    [8] 姜福兴,尹永明,朱权洁,等.基于微震监测的千米深井厚煤层综放面支架围岩关系研究[J].采矿与安全工程学报,2014,31(2):167-174.

    JIANG Fuxing, YIN Yongming, ZHU Quanjie, et al. Relationship between support and surrounding rock of fully mechanized caving face in thick coal seam of kilometer deep mine based on microseismic monitoring technology[J]. Journal of Mining & Safety Engineering, 2014, 31(2): 167-174.

    [9] 姜福兴,冯宇,刘晔.采场回采前冲击危险性动态评估方法研究[J].岩石力学与工程学报,2013,33(10):2101-2106.

    JIANG Fuxing, FENG Yu, LIU Ye. Dynamic evaluation method for rockburst risk before stopping[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 33(10): 2101-2106.

    [10] 何学秋,王安虎,窦林名,等.突出危险煤层微震区域动态监测技术[J].煤炭学报,2018,43(11):3122.

    HE Xueqiu, WANG Anhu, DOU Linming, et al. Technology of microseismic dynamic monitoring on coal and gas outburst-prone zone[J]. Journal of China Coal Society, 2018, 43(11): 3122.

    [11] 欧阳振华,孔令海,齐庆新,等.自震式微震监测技术及其在浅埋煤层动载矿压预测中的应用[J].煤炭学报,2018,43(S1):44-51.

    OUYANG Zhenhua, KONG Linghai, QI Qingxin, et al.Self-shocking microseismic monitoring technology and its application in prediction of dynamic pressure in shallow coal seam[J]. Journal of China Coal Society, 2018, 43(S1): 44-51.

    [12] 秦忠诚,刘玉腾,王生超,等.基于微震监测的深埋“两硬”综放面覆岩运动规律研究[J].采矿与安全工程学报,2017,34(1):74-78.

    QIN Zhongcheng, LIU Yuteng, WANG Shengchao, et al. The study of motion regularity of overlying strata over deep-buried “dual hard” fully-mechanized workface based on microseismic monitoring[J]. Journal of Mining & Safety Engineering, 2017, 34(1): 74-78.

    [13] 吕鹏飞,陈学华,宋卫华,等.基于微震监测的采动工程效应及矿震孕灾机理[J].地球物理学进展,2017, 32 (3):1399.

    L?譈 Pengfei, CHEN Xuehu, SONG Weihua, et al. Mining-induced engineering effects base on microseismic monitoring and disaster-pregnant mechanism of shock bump[J]. Progress in Geophysics, 2017, 32(3): 1399.

    [14] 刘金海.煤矿冲击地压监测预警技术新进展[J].煤炭科学技术,2016,44(6):71-77.

    LIU Jinhai. New progress on monitoring and early warning technology of mine strata pressure bump[J]. Coal Science and Technology, 2016, 44(6): 71-77.

    [15] 夏永学,潘俊锋,王元杰,等.基于高精度微震监测的煤岩破裂与应力分布特征研究[J].煤炭学报,2011, 36(2):239-243.

    XIA Yongxue, PAN Junfeng, WANG Yuanjie, et al. Study of rule of surrounding rock failure and stress distribution based on high-precision microseismic monitoring[J]. Journal of China Coal Society, 2011, 36(2): 239-243.

    [16] 夏永学,康立军,齐庆新,等.基于微震监测的 5 个指标及其在冲击地压预测中的应用[J].煤炭学报,2010,35(12):2011-2016.

    XIA Yongxue, KANG Lijun, QI Qingxin, et al. Five indexes of microseismic and their application in rock burst forecastion[J]. Journal of China Coal Society, 2010, 35(12): 2011-2016.

    [17] 徐刚,陈法兵,王元杰,等.井上下微震联合监测震源垂直定位精度优化研究[J].煤炭科学技术,2020,48(2):80-88.

    XU Gang, CHEN Fabing, WANG Yuanjie, et al. Study on optimization of vertical location accuracy of seismic source based on joint monitoring of surface and underground micro-seismic monitoring[J]. Coal Science and Technology, 2020, 48(2): 80-88.

    [18] 陈法兵.矿山微震定位子台网的分布对定位精度的影响[J].煤矿开采,2016,21(4):107-113.

    CHEN Fabing. Influence of mine microseism location sub network distribution to positioning precision[J].Coal Mining Technology, 2016, 21(4): 107-113.

计量
  • 文章访问数:  113
  • HTML全文浏览量:  0
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 发布日期:  2022-07-19

目录

    /

    返回文章
    返回