• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

圆孔障碍物对压力重叠影响的实验研究

马云龙

马云龙. 圆孔障碍物对压力重叠影响的实验研究[J]. 煤矿安全, 2022, 53(7): 70-73.
引用本文: 马云龙. 圆孔障碍物对压力重叠影响的实验研究[J]. 煤矿安全, 2022, 53(7): 70-73.
MA Yunlong. Experimental study on the influence of circular hole obstacles on pressure overlap[J]. Safety in Coal Mines, 2022, 53(7): 70-73.
Citation: MA Yunlong. Experimental study on the influence of circular hole obstacles on pressure overlap[J]. Safety in Coal Mines, 2022, 53(7): 70-73.

圆孔障碍物对压力重叠影响的实验研究

Experimental study on the influence of circular hole obstacles on pressure overlap

  • 摘要: 为了研究圆孔障碍物对压力重叠的影响,利用爆炸测试系统,对不同的圆孔障碍物进行实验,获得了不同的甲烷空气爆炸传播过程。对爆炸过程分析表明:圆板孔尺寸与压力上升速率成指数关系;当圆板中间孔直径为16 mm时,爆炸压力最大为1.129 MPa,当圆板中间孔直径为160 mm时,爆炸压力最小为0.290 MPa:当圆板中间孔直径小于70%的管道内径,便会发生压力重叠。
    Abstract: In order to study the influence of circular hole obstacles on pressure overlap, different circular hole obstacles were tested to obtain different methane air explosion propagation process by explosion test system. The analysis of the explosion process shows that the size of the round plate has an exponential relationship with the rate of pressure rise; when the size of the round hole is 16 mm, the maximum explosion pressure is 1.129 MPa; when the size of the round plate is 160 mm, the minimum explosion pressure is 0.290 MPa; when the size of the round hole is less than 70% of the inner diameter of the pipe, the pressure overlap will occur.
  • [1] Dorofeev S B. Flame acceleration and explosion safety applications[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2161-2175.
    [2] Alharbi A, Masri A R, Ibrahim S S. Turbulent premixed flames of CNG,LPG,and H2 propagating past repeated obstacles[J]. Experimental Thermal and Fluid Science, 2014, 56(7): 2-8.
    [3] Johansen C T, Ciecarelli G. Modeling the initial flame acceleration in an obstructed channel using large eddy simulation[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4): 571-585.
    [4] JOHANSEN C, CICCARELLI G. Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel[J]. Combustion and Flame, 2009(2): 405-416.
    [5] 陈鹏,李艳超,黄福军,等.方孔障碍物对瓦斯火焰传播影响的实验与大涡模拟[J].爆炸与冲击,2017,37(1):21-26.

    CHEN Peng, LI Yanchao, HUANG Fujun, et al. LES approach to premixed methane/air flame propagating in the closed duct with a square-hole obstacle[J]. Explosion and Shock Waves, 2017, 37(1): 21-26.

    [6] 王公忠,张建华,李登科,等.障碍物对预混火焰特性影响的大涡数值模拟[J].爆炸与冲击,2017,37(1):68-76.

    WANG Gongzhong, ZHANG Jianhua, LI Dengke, et al. Large eddy simulation of impacted obstacles’ effects on premixed flame’s characteristics[J]. Explosion and Shock Waves, 2017, 37(1): 68-76.

    [7] 鞠哲,陈凡东,贺振国,等.隔爆外壳中孔板结构对爆炸压力的叠加影响[J].煤矿安全,2014,45(5):219.

    JU Zhe, CHEN Fandong, HE Zhenguo, et al. The superposition impact of orifice structure of flameproof enclosure on explosion pressure[J]. Safety in Coal Mines, 2014, 45(5): 219.

    [8] 刘凯华.2腔小孔联通型隔爆电气设备外壳爆炸实验[J].煤矿安全,2015,46(10):8-10.

    LIU Kaihua. Shell explosion test for flameproof electrical apparatus with two connected chambers[J]. Safety in Coal Mines, 2015, 46 (10): 8-10.

    [9] 李润之,司荣军.瓦斯浓度对爆炸压力及压力上升速率的影响研究[J].西安科技大学学报,2010,30(1):29-33.

    LI Runzhi, SI Rongjun. Effect of gas concentration on the explosion pressure and pressure rise rate[J]. Journal of Xi’an University of Science and Technology, 2010, 30(1): 29-33.

    [10] 高娜,张延松,胡毅亭.温度、压力对甲烷-空气混合物爆炸极限耦合影响的实验研究[J].爆炸与冲击,2017,37(3):453.

    GAO Na, ZHANG Yansong, HU Yiting. Experimental study on methane-air mixtures explosion limits at normal and elevated initial temperatures and pressures[J]. Explosion and Shock Waves, 2017, 37(3): 453.

    [11] 陈凡东,冯利国,尚思思.新型防爆实验装置的甲烷浓度模拟[J].煤矿安全,2015,46(2):79-81.

    CHEN Fandong, FENG Liguo, SHANG Sisi. Methane concentration simulation for new flameproof testing device[J]. Safety in Coal Mines, 2015, 46(2): 79-81.

    [12] GB 3836.2—2010 爆炸性气体环境用电气设备第2部分:隔爆型‘d’[s].
    [13] 苏岱峰.煤尘对瓦斯爆炸压力及压力上升速率的影响研究[D].重庆:重庆大学,2018.
    [14] 田诗雅,刘剑,高科.密闭管道瓦斯爆炸冲击波冲量及压力上升速率的实验研究[J].中国安全生产科学技术,2015(8):16-21.

    TIAN Shiya, LIU Jian, GAO Ke. Experimental study on shock wave impulse and pressure rise rate of gas explosion in airtight pipeline[J]. Journal of Safety Science and Technology, 2015(8): 16-21.

  • 期刊类型引用(8)

    1. 刘瑞. 厚煤层工作面双回撤通道切顶卸压区间煤柱优化研究. 煤. 2024(07): 68-71 . 百度学术
    2. 高磊. 大柳塔煤矿52508工作面双回撤通道区间煤柱宽度研究. 能源与节能. 2024(11): 274-277 . 百度学术
    3. 马菲菲,周广建,渠江. 某矿浅埋煤层综采工作面回撤巷道稳定性研究. 矿业装备. 2024(10): 4-6 . 百度学术
    4. 韩敬. 东曲煤矿28214工作面区段煤柱留设宽度分析研究. 煤炭与化工. 2023(07): 23-26 . 百度学术
    5. 娄杰,徐严军,柏建彪,张栋,李斌,卞卡,刘峰. 叠加扰动下剩余煤柱应力演化特征分析. 煤炭工程. 2022(08): 84-90 . 百度学术
    6. 郭腾飞. 近距离煤层孤岛工作面两侧煤柱留设宽度探讨. 江西煤炭科技. 2022(04): 64-67 . 百度学术
    7. 赵会波,张佳文,王涛. 王坡煤矿综采工作面快速设备回撤技术. 煤炭工程. 2022(11): 101-106 . 百度学术
    8. 贾瀚文,裴佃飞,吴钦正,刘焕新,尹延天,董春蕾. 阿尔哈达铅锌矿采空区群治理方案. 采矿与岩层控制工程学报. 2021(03): 117-123 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  37
  • HTML全文浏览量:  0
  • PDF下载量:  9
  • 被引次数: 13
出版历程
  • 发布日期:  2022-07-19

目录

    /

    返回文章
    返回