不同条件下燃煤颗粒物的粒径分布研究
Study on particle size distribution of coal combustion under different conditions
-
摘要: 为研究不同条件对煤燃烧生成颗粒物的影响,在实验室条件下,利用微孔均匀沉积冲击器将煤粉燃烧后生成的颗粒物分离并收集到0~18 μm中的11个区间,研究了燃烧温度、质量、煤种及其尺寸大小对颗粒物生成的影响。结果表明:低温状态下,烟煤和褐煤收集到的总颗粒物质量较高温状态下明显增加;高温状态下,两者颗粒粒径分布在1.0~10 μm区间内质量增加,粒径峰值分别出现在0.18~<0.32 μm、0.32~1.0 μm内;烟煤燃烧生成颗粒物质量较褐煤明显增多,燃烧生成颗粒物质量与煤粉质量及尺寸大小呈正比关系。Abstract: In order to study the influence of different conditions on the particulate matter produced by coal combustion, the particulate matter produced by coal combustion is separated and collected in 11 ranges of 0-18 μm by micro-orifice uniform deposit impactor under laboratory conditions. The effects of combustion temperature, mass, coal type and size on the formation of particulate matter are studied. The results show that the total particle mass of bituminous coal and lignite at low temperature is obviously higher than that at high temperature. At high temperature, the particle size distribution of the two samples increased in the range of 1.0-10 μm, and the peak size appeared in the range of 0.18-0.32 μm and 0.32-1.0 μm respectively. Compared with lignite, the quality of particles produced by bituminous coal combustion is obviously increased, and the quality of particles produced by bituminous coal combustion is proportional to the quality and size of pulverized coal.
-
-
[1] 文虎,田晴,赵向涛,等.煤层火灾监测与治理研究现状及发展趋势[J].煤炭工程,2021,53(9):101. WEN Hu, TIAN Qing, ZHAO Xiangtao, et al. Research status and development trend of coal fire monitoring and control[J]. Coal Engineering, 2021, 53(9): 101.
[2] 包兴东.新疆第五次煤田火区普查成果分析[J].能源与环保,2021,43(2):1-4. BAO Xingdong. Analysis on results of the fifth coalfield fire area survey in Xinjiang[J]. China Energy and Environmental Protection, 2021, 43(2): 1-4.
[3] Stracher G B, Taylor T P. Coal fires burning out of control around the world: thermodynamic recipe for environmental catastrophe[J]. International Journal of Coal Geology, 2004, 59(1/2): 7-17. [4] M Fabiańska, Ciesielczuk J, ádám Nádudvari, et al. Environmental influence of gaseous emissions from self-heating coal waste dumps in Silesia, Poland[J]. Environmental Geochemistry and Health, 2019, 41(2): 575. [5] Yang B, Bai Z, Zhang J. Environmental impact of mining-associated carbon emissions and analysis of cleaner production strategies in China[J]. Environmental Science and Pollution Research, 2020, 28(11): 1-11. [6] 吕建燚,李定凯.温度对煤粉燃烧生成的一次颗粒物特性的影响[J].中国电机工程学报,2007,27(20):24. LU Jianyi, LI Dingkai. Study on primary PM features influenced by pulverized coal combustion at different burning temperature[J]. A Journal of the Chinese Society for Electrical Engineering, 2007, 27(20): 24-29.
[7] 周永刚,肖键,赵虹.混煤燃烧过程中温度对颗粒物生成特性影响的研究[J].环境科学学报,2007,27(3):426-430. ZHOU Yonggang, XIAO Jian, ZHAO Hong. Study on the effects of temperature on particulate matters formation during blended coal combustion[J]. Acta Scientiae Circumstantiae, 2007, 27(3): 426-430.
[8] Zellagui S, Trouve G, Schonnenbeck C, et al. Parametric study on the particulate matter emissions during solid fuel combustion in a drop tube furnace[J]. Fuel Guildford, 2017, 189(1): 358-368. [9] Lian Zhang, Ninomiya Y. Emission of suspended PM10 from laboratory-scale coal combustion and its correlation with coal mineral properties[J]. Fuel, 2006, 85(2): 194-203. [10] Li Q, Jiang J, Qi Z, et al. Influences of coal size, volatile matter content, and additive on primary particulate matter emissions from household stove combustion[J]. Fuel, 2016, 182(15): 780-787. [11] 孙在,谢小芳,杨文俊,等.煤燃烧超细颗粒物的粒径分布及数浓度排放特征试验[J].环境科学学报,2014, 34(12):3126-3132. SUN Zai, XIE Xiaofang, YANG Wenjun, et al. Size distribution and number emission characteristics of ultrafine particles from coal combustion[J]. Acta Scientiae Circumstantiae, 2014, 34(12): 3126-3132.
[12] Lian Zhang, Yoshihiko Ninomiya, Toru Yamashita. Formation of submicron particulate matter (PM1) during coal combustion and influence of reaction temperature[J]. Fuel, 2006, 85(10): 1446-1457. [13] 于敦喜,徐明厚,姚洪,等.燃煤颗粒物三模态的有效识别[J].科学通报,2007,52(24):2910-2918. [14] 郑丽,龚志军,金光,等.烟煤颗粒燃烧生成PM10粒径分布研究[J].工业安全与环保,2015,41(2):66. ZHENG Li, GONG Zhijun, JIN Guang, et al. Research on distribution of particle size PM10 in bituminous coal combustion[J]. Industrial Safety and Environmental Protection, 2015, 41(2): 66.
[15] 张凯,龚本根,田冲,等.燃煤细颗粒物排放实验及形成机理[J].煤炭学报,2015,40(11):2696-2701. ZHANG Kai, GONG Bengen, TIAN Chong, et al. Formation mechanisms of fine particles generated from coal combustion[J]. Journal of China Coal Society, 2015, 40(11): 2696-2701.
[16] 张丰豪,柳朝晖,黎春梅,等.燃煤过程中微细颗粒生成机理及其模拟研究的进展[J].燃烧科学与技术,2006, 12(6):507-513. ZHANG Fenghao, LIU Zhaohui, LI Chunmei, et al. A review of mechanics and models of fine particles formation during pulverized coal combustion[J]. Journal of Combustion Science and Technology, 2006, 12(6): 507-513.
[17] A S Damle, D S Ensor, M B Ranade. Coal Combustion Aerosol Formation Mechanisms: A Review[J]. Aerosol Science and Technology, 1982, 1(1): 119-133. [18] Kauppinen E I, Pakkanen T A. Coal combustion aerosols: A field study[J]. Environmental Science and Technology, 1990, 24(12): 1811-1818. [19] 曾宪鹏,于敦喜,樊斌,等.不同温度下准东煤燃烧颗粒物的生成特性[J].煤炭学报,2015,40(11):2690. ZENG Xianpeng, YU Dunxi, FAN Bin, et a1. Particulate matter formation characteristics during Zhundong coal combustion at different temperatures[J]. Journal of China Coal Society, 2015, 40(11): 2690.
-
期刊类型引用(6)
1. 念熙博,李宏杰,李伟,闫杰,郭夏飞,贾正昭. 侧向正交开采扰动边坡变形演变机理与破坏模式研究. 煤矿安全. 2024(08): 146-152 . 本站查看
2. 陈金宏,胡应全,袁琴,王刘文. 井工煤矿采动影响下的边坡稳定性分析. 地质灾害与环境保护. 2024(03): 123-128 . 百度学术
3. 李泽根,吕义清,陈强,刘志辉. 采煤工作面推进方向对斜坡变形破坏特征影响研究. 煤炭技术. 2023(02): 24-28 . 百度学术
4. 李冲,杨斌,张晓涛. 兴仁市复杂采动边坡变形机理及防治对策. 煤炭与化工. 2023(01): 31-34 . 百度学术
5. 冯超越,吕义清. 断层影响下采煤斜坡变形破坏及稳定性研究. 煤炭技术. 2022(09): 40-44 . 百度学术
6. 路琦,吕义清,刘志辉. 工作面布置方式对沟谷区采动斜坡变形破坏特征的影响研究. 煤矿安全. 2021(12): 214-218+228 . 本站查看
其他类型引用(5)
计量
- 文章访问数: 22
- HTML全文浏览量: 0
- PDF下载量: 8
- 被引次数: 11