• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

基于双向流固耦合的液压立柱冲击特性分析

刘亚, 陈玉猛, 张坤, 黄梁松, 亓玉浩, 李玉霞, 钟东虎, 魏训涛, 张福佳

刘亚, 陈玉猛, 张坤, 黄梁松, 亓玉浩, 李玉霞, 钟东虎, 魏训涛, 张福佳. 基于双向流固耦合的液压立柱冲击特性分析[J]. 煤矿安全, 2022, 53(6): 143-147.
引用本文: 刘亚, 陈玉猛, 张坤, 黄梁松, 亓玉浩, 李玉霞, 钟东虎, 魏训涛, 张福佳. 基于双向流固耦合的液压立柱冲击特性分析[J]. 煤矿安全, 2022, 53(6): 143-147.
LIU Ya, CHEN Yumeng, ZHANG Kun, HUANG Liangsong, QI Yuhao, LI Yuxia, ZHONG Donghu, WEI Xuntao, ZHANG Fujia. Analysis of impact characteristics of hydraulic column based on bidirectional fluid-structure coupling[J]. Safety in Coal Mines, 2022, 53(6): 143-147.
Citation: LIU Ya, CHEN Yumeng, ZHANG Kun, HUANG Liangsong, QI Yuhao, LI Yuxia, ZHONG Donghu, WEI Xuntao, ZHANG Fujia. Analysis of impact characteristics of hydraulic column based on bidirectional fluid-structure coupling[J]. Safety in Coal Mines, 2022, 53(6): 143-147.

基于双向流固耦合的液压立柱冲击特性分析

Analysis of impact characteristics of hydraulic column based on bidirectional fluid-structure coupling

  • 摘要: 立柱作为液压支架最重要的承载部件,其承载性能的优劣对液压支架整机的支撑效果有着巨大的影响,尤其当冲击地压灾害发生时,可能造成液压支架立柱弯曲、断裂和爆缸等事故发生。采用Solid Works联合Design Modeler软件建立ZF10000/25/38型液压支架立柱的流固耦合模型,将液压支架立柱等效视为弹簧,推导出单伸缩立柱等效刚度数学模型;使用ANSYS Workbench仿真软件对立柱流固耦合模型进行双向瞬态流固耦合仿真,采用三角波冲击载荷模拟冲击地压冲击特性,研究液压支架单伸缩立柱的抗冲击特性。结果表明:冲击载荷作用下液压支架立柱活塞杆最大应力为508 MPa,发生在顶端,缸体最大应力为254 MPa,发生在底部。
    Abstract: As the most important bearing component of the hydraulic support, the bearing performance of the column has a huge influence on the supporting effect of the whole hydraulic support. Especially, when the coal bump disaster occurs, it may cause accidents such as bending, fracture and cylinder explosion of the hydraulic support column. The fluid-structure interaction model of ZF10000/25/38 hydraulic support column is established by Solid Works and Design Modeler software. The hydraulic support column is regarded as a spring, and the equivalent stiffness mathematical model of single telescopic column is derived. Then, the bidirectional transient fluid-structure interaction model of column is simulated by ANSYS Workbench simulation software, and the impact characteristics of coal bump are simulated by introducing triangular wave impact load to study the anti-impact characteristics of the single telescopic column of the hydraulic support. The simulation results show that the maximum stress of hydraulic support column piston rod under impact load is 508 MPa, which occurs at the top, and the maximum stress of cylinder block is 254 MPa, which occurs at the bottom.
  • [1] 翟国栋,杨幸,张宇航,等.双伸缩液压支架立柱的冲击参数选取分析[J].煤矿机械,2020,41(8):64-67.

    ZHAI Guodong, YANG Xing, ZHANG Yuhang, et al. Analysis on selection of impact parameters of double telescopic hydraulic support column[J]. Coal Mine Machinery, 2020, 41(8): 64-67.

    [2] González-Nicieza C, Menéndez-Díaz A, lvarez-Vigil AE, et al. Analysis of support by hydraulic props in a longwall working[J]. International Journal of Coal Geology, 2008, 74(1): 67-92.
    [3] 徐伟.冲击载荷下液压支架立柱的受载特性研究[J].煤矿机械,2021,42(2):63-66.

    XU Wei. Study on load characteristics of hydraulic support column under impact load[J]. Coal Mine Machinery, 2021, 42(2): 63-66.

    [4] 韩钰,袁红兵,廉自生.冲击载荷下的液压支架双伸缩立柱可靠性分析[J].煤矿机械,2015,36(3):92-93.

    HAN Yu, YUAN Hongbing, LIAN Zisheng. Reliability analysis on double-telescopic prop of hydraulic support under impact load[J]. Coal Mine Machinery, 2015, 36(3): 92-93.

    [5] 罗傲梅.基于冲击载荷的液压支架立柱动态特性分析[J].煤矿机械,2021,42(5):88-91.

    LUO Aomei. Analysis of dynamic characteristics of hydraulic support column based on impact load[J]. Coal Mine Machinery, 2021, 42(5): 88-91.

    [6] 郭永昌,廉自生.液压支架单伸缩立柱瞬态动力学分析[J].煤矿机械,2015,36(8):130-132.

    GUO Yongchang, LIAN Zisheng. Transient kinetic analysis of roof support single-telescopic leg[J]. Coal Mine Machinery, 2015, 36(8): 130-132.

    [7] Xuewen Wang, Zhaojian Yang, Jiling Feng, et al. Stress analysis and stability analysis on doubly-telescopic prop of hydraulic support[J]. Engineering Failure Analysis, 2013, 32: 274-282.
    [8] 任洁,刘永参,兰明,等.液压支架立柱的流固耦合分析[J].机械工程与自动化,2011(5):59-60.

    REN Jie, LIU Yongcan, LAN Ming, et al. A fluid-solid coupling analysis of hydraulic support props[J]. Mechanical Engineering & Automation, 2011(5): 59-60.

    [9] 江民圣.ANSYS Workbench19.0基础入门与工程实践[M].北京:人民邮电出版社,2019.
    [10] GB 25974.2—2010煤矿用液压支架第2部分:立柱和千斤顶技术条件[S].
  • 期刊类型引用(5)

    1. 关开荣,赵文琦. 智能机器人在深井爆破中的应用及发展趋势. 矿业研究与开发. 2024(12): 228-235 . 百度学术
    2. 史义存. 煤矿机器人关键共性技术与发展探讨. 中国设备工程. 2023(11): 40-42 . 百度学术
    3. 武俊. 煤矿机器人关键共性技术与发展探讨. 工矿自动化. 2023(S1): 1-3 . 百度学术
    4. 宋国栋. 煤矿电力巡检机器人设备在线识别方法研究与实践. 煤炭科技. 2022(01): 100-104 . 百度学术
    5. 宋国栋. 面向掘进工作面爆破质量评价的移动测量机器人技术研究. 煤炭工程. 2022(04): 182-186 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  21
  • HTML全文浏览量:  0
  • PDF下载量:  7
  • 被引次数: 5
出版历程
  • 发布日期:  2022-06-19

目录

    /

    返回文章
    返回