升温过程中弱黏煤磁性变化关键因素实验研究
Experimental study on key factors of magnetic change of weakly caking coal during heating
-
摘要: 为了研究黄陇煤田弱黏煤在升温过程中磁性变化机制,测定升温过程中煤样的质量磁化率,与同等温度热处理后的烧变煤样对比,将煤在升温中的磁变过程划分为4个阶段,分别针对不同阶段开展弱黏煤的程序升温、工业分析及X射线衍射等实验,探究不同升温阶段导致其磁性变化的关键性因素。结果表明:在常温至200 ℃范围内,煤样质量磁化率由负转正缓慢升高,此阶段影响煤体磁性的主要原因是煤体中显逆磁性的含碳化合物组分由于氧化消耗而下降;在200~350 ℃区间,煤样中微量矿物发生化学反应生成顺磁性更强的物质,致使煤样磁化率急剧上升,平均增长率超过上一阶段10倍;350 ℃后磁化率开始迅速降低,500 ℃后平稳于0点附近,主要矿物内部微粒运动由于随温度的升高而加剧,影响磁畴磁矩的有序排列,升至居里温度时,这种影响达到极限,变化趋于稳定。Abstract: To study the magnetic change mechanism of weakly caking coal during the heating process, the mass magnetic susceptibility of coal samples during the heating process was measured in this paper. Compared with the burnt coal sample after heat treatment at the same temperature, the magnetic change process of coal during heating was divided into four stages. The experiments of programmed temperature rise, industrial analysis and X-ray diffraction of coal were conducted at different stages to explore the key factors that lead to changes in its magnetic properties in different heating stages. The experimental results show that the magnetic susceptibility of the coal sample changes from negative to positive and then slowly rises at room temperature to 200 ℃. The effect on the magnetic properties of the coal at this stage is due to the decrease of the diamagnetic carbon-containing compounds in the coal due to oxidative consumption. At 200 ℃ to 350 ℃, the magnetic susceptibility of the coal sample rises sharply, and the average growth rate is 10 times higher than that of the previous stage. This is because the trace minerals in the coal sample chemically react to produce more magnetic substances. When the temperature exceeds 350 ℃, the magnetic susceptibility begins to decrease rapidly, and the magnetic susceptibility stabilizes near 0 after the temperature is 500 ℃. The possible reason is that with the increase of temperature, the movement of particles inside the mineral intensifies and affects the orderly arrangement of the magnetic domain and magnetic moment. When the temperature rises to the Curie temperature, this influence reaches its limit and the change tends to be stable.
-
-
[1] 邵振鲁,王德明,王雁鸣.煤田火灾探测方法研究进展[J]. 煤矿安全,2012,43(8):189-192. SHAO Zhenlu, WANG Deming, WANG Yanming. Research progress of coalfield fire detection method[J]. Safety in Coal Mines, 2012, 43(8): 189-192.
[2] 张秀山.新疆煤田火烧区特征及灭火问题探讨[J].中国煤田地质,2004,16(1):18-21. ZHANG Xiushan. Probe into Xinjiang Coalfield underground combustion area features and fire-fighting problems[J]. Coal Geology of China, 2004, 16(1): 18-21.
[3] IDE T S, Crook N, Orr F M, et al. Magnetometer measurements to characterize a subsurface coal fire[J]. International Journal of Coal Geology, 2011, 87(3): 190. [4] 宁靖,张建民,宁书年.磁导成像方法研究及在宁夏汝箕沟煤田火区探测中的应用[J].煤炭学报,2001,26(3):225-229. NING Jing, ZHANG Jianmin, NING Shunian. Study on magnetic digital imaging and its application of coal fire detection in Rujigou coal field, China[J]. Journal of China Coal Society, 2001, 26(3): 225-229.
[5] 宋吾军,王雁鸣,邵振鲁.高密度电法与磁法探测煤田火区的数值模拟[J].煤炭学报,2016,41(4):899. SONG Wujun, WANG Yanming, SHAO Zhenlu. Numerical simulation of electrical resistance tomography method and magnetic method in detecting coal fires[J]. Journal of China Coal Society, 2016, 41(4): 899.
[6] 邵振鲁,王德明,王雁鸣.高密度电法探测煤火的模拟及应用研究[J].采矿与安全工程学报,2013,30(3):468-474. SHAO Zhenlu, WANG Deming, WANG Yanming. Simulation of high-density electrical method in detecting coal fires and its application[J]. Journal of Mining and Safety Engineering, 2013, 30(3): 468-474.
[7] 陈敏,邵伟.应用地面磁法圈定煤田火区边界[J].物探与化探,2010,34(1):89-92. CHEN Min, SHAO Wei. The Application of the ground magnetic method to the exploration of fire area boundary of the coal field[J]. Geophysical and Geochemical Exploration, 2010, 34(1): 89-92.
[8] 许满贵,申敬杰,贺清.煤自燃危险区域磁法判定技术及应用[J].矿业安全与环保,2014,41(2):41-44. XU Mangui, SHEN Jingjie, HE Qing. Magnetic prospecting technology for dangerous coal spontaneous combustion area and its applications[J]. Mining Safety & Environmental Protection, 2014, 41(2): 41-44.
[9] 焦红光,李沙,王灿,等.热处理强化煤系黄铁矿磁性的研究[J].中国矿业大学学报,2011,40(3):459-462. JIAO Hongguang, LI Sha, WANG Can, et al. Study of magnetic enhancement of coal-derived pyrite by pyrolysis[J]. Journal of China University of Mining & Technology, 2011, 40(3): 459-462.
[10] 张辛亥,秦政,卢苗苗,等.温度对煤岩磁性影响的实验研究[J].煤矿安全,2018,49(12):27-30. ZHANG Xinhai, QIN Zheng, LU Miaomiao, et al. Effect of temperature on magnetic properties of coal and rock[J]. Safety in Coal Mines, 2018, 49(12): 27-30.
[11] 梁运涛,侯贤军,罗海珠,等.我国煤矿火灾防治现状及发展对策[J].煤炭科学技术,2016,44(6):1. LIANG Yuntao, HOU Xianjun, LUO Haizhu, et al. Development countermeasures and current situation of coal mine fire prevention & extinguishing in China.[J]. Coal Science and Technology, 2016, 44(6): 1.
[12] 邓军,白祖锦,肖旸,等.煤自燃灾害防治技术现状与挑战[J].煤矿安全,2020,51(10):118-125. DENG Jun, BAI Zujin, XIAO Yang, et al. Present situation and challenge of coal spontaneous combustion disasters prevention and control technology[J]. Safety in Coal Mines, 2020, 51(10): 118-125.
[13] 王伟.煤田火灾探测与治理技术现状及发展趋势[J].煤矿安全,202 0,51(11):206-209. WANG Wei. Current situation and development trend for coalfield fire exploration and governance technology[J]. Safety in Coal Mines, 2020, 51(11): 206-209.
[14] Shao Z, Wang D, Wang Y, et al. Theory and application of mag-netic and self-potential methods in the detection of the Heshituo luogai coal fire, China[J]. Journal of Applied Geophysics, 2014, 104: 64-74. [15] 曾强.新疆地区煤火燃烧系统热动力特性研究[D].徐州:中国矿业大学,2012. [16] 卢国栋.大面积煤田火区范围圈划及燃烧机理研究[D].北京:中国矿业大学(北京),2009. [17] 熊盛青,陈斌,于长春,等.地下煤层自然遥感与地球物理探测技术[M].北京:地质出版社,2006. [18] 王文晖.基于火源精确探测的矿井自燃火灾灭火技术研究[D].太原:太原理工大学,2010. [19] 陈云浩,李京,杨波,等.基于遥感和GIS的煤田火灾监测研究—以宁夏汝箕沟煤田为例[J].中国矿业大学学报,2005,34(2):226-230. CHEN Yunhao, LI Jing, YANG Bo, et al. Monitoring coal fires based on remotely sensed data and GIS technique in coalfields—A case study of Rujigou Coal field in Nixia, China[J]. Journal of China University of Mining & Technology, 2005, 34(2): 226-230.
[20] 邵振鲁.煤田火灾磁、电异常演变特征及综合探测方法研究[D].徐州:中国矿业大学,2017. [21] 梁运涛.煤炭自然发火预测预报的气体指标法[J]. 煤炭科学技术,2008,36(6):5-8. LIANG Yuntao. Gas index method to predict coal spontaneous combustion[J]. Coal Science and Technology, 2008, 36(6): 5-8.
[22] 宋泽阳,朱红青,徐纪元,等.地下煤火高温阶段贫氧不完全燃烧耗氧速率的计算[J].煤炭学报,2014,39(12):2439. SONG Zeyang, ZHU Hongqing, XU Jiyuan, et al. An approach to calculate oxygen consumption rate of underground coal fires with lean oxygen concentration and incomplete combustion at high temperature[J]. Journal of China Coal Society, 2014, 39(12): 2439.
[23] WANG Jiren, SUN Yanqiu, ZHAO Qingfu, et al. Basic theory research of coal spontaneous combustion[J]. Journal of Coal Science & Engineering(China), 2008, 14(2): 239-243. [24] 徐精彩,张辛亥,文虎,等.煤氧复合过程及放热强度测算方法[J].中国矿业大学学报,2000,29(3):253. XU Jingcai, ZHANG Xinhai, WEN Hu, et al. Procedure of reaction between coal and oxygen at low temperature and calculation of its heat emitting intensity[J]. Journal of China University of Mining & Technology, 2000, 29(3): 253.
[25] 秦政.煤岩高温磁异常规律及机理研究[D].西安:西安科技大学,2018. [26] 朱宝忠,孙运兰,谢承卫.不同煅烧温度下贵州兴义煤矸石的光谱学研究[J].煤炭学报,2008,33(9):1049-1052. ZHU Baozhong, SUN Yunlan, XIE Chengwei. Spectroscopy research on the Guizhou Xingyi gangue of diff erent calcined temperatures[J]. Journal of China Coal Society, 2008, 33(9): 1049-1052.
-
期刊类型引用(0)
其他类型引用(2)
计量
- 文章访问数: 34
- HTML全文浏览量: 0
- PDF下载量: 8
- 被引次数: 2