基于Drucker-Prager准则的含瓦斯水合物煤体强度准则研究
Study on strength criterion of gas hydrate-coal mixture based on Drucker - Prager criterion
-
摘要: 为获得含瓦斯水合物煤体在高饱和度下强度准则的适用性,基于Drucker-Prager准则,结合高饱和度含瓦斯水合物煤体常规三轴压缩下的应力-应变曲线,探讨Drucker-Prager准则下其理论值与试验值的误差,分析Drucker-Prager准则的适用性,同时与Mohr-Coulomb准则进行对比。结果表明:含瓦斯水合物煤体的峰值强度在高饱和度和围压耦合作用下,其值随着围压和饱和度的增加而增加;Mohr-Coulomb准则与Drucker-Prager准则的强度预测绝对误差最大值分别为6.77%和3.66%,说明试验结果与预测模型的吻合度较高;然而Drucker-Prager准则强度预测绝对误差均在0.92%~3.66%,其误差波动范围较小,说明Drucker-Prager准则在高饱和度下更为适用。
-
关键词:
- 含瓦斯水合物煤体 /
- 煤与瓦斯突出 /
- Drucker-Prager准则 /
- Mohr-Coulomb准则 /
- 煤体强度
Abstract: In order to obtain the applicability of the strength criterion of gas hydrate coal under high saturation, based on Drucker-Prager criterion and combined with the stress-strain curve of gas hydrate coal under conventional triaxial compression, the error between the theoretical value and the experimental value under Drucker-Prager criterion was discussed. The applicability of Drucker-Prager criterion was analyzed and compared with Mohr-Coulomb criterion. The results show that the peak strength of gas hydrate coal increases with the increase of confining pressure and saturation under the coupling effect of high saturation and confining pressure. The maximum absolute errors of strength prediction by Mohr-Coulomb criterion and Drucker-Prager criterion were 6.77% and 3.66%, respectively, indicating that the test results were in good agreement with the prediction model. However, the absolute errors of intensity prediction of Drucker-Prager criterion are in the range of 0.92%-3.66%, and the range of error fluctuation is small, indicating that Drucker-Prager criterion is more suitable for high saturation. -
-
[1] 俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992. [2] WU Qiang, HE Xueqiu. Preventing coal and gas outburst using methane hydration[J]. Journal of China University of Mining & Technology, 2003, 13(1): 7-10. [3] 高霞,刘文新,高橙,等.含瓦斯水合物煤体强度特性三轴试验研究[J].煤炭学报,2015,40(12):2829-2835. GAO Xia, LIU Wenxin, GAO Cheng, et al. Triaxial shear strength of methane hydrate-bearing coal[J]. Journal of China Coal Society, 2015, 40(12): 2829-2835.
[4] DRUCKER D C, PRAGERW. Soil mechanics and plastic analysis for limit design[J]. Quarterly of Applied Mathematics, 1952, 10(2): 157-165. [5] 姚再兴.软化Drucker-Prager材料强度参数的测定方法[J].岩石力学与工程学报,2014,33(6):1187-1193. YAO Zaixing. A method for measuring strength parameters of softening Drucker-Prager material[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6): 1187-1193.
[6] DAVIS R O, SELVADURAI A P S. Plasticity and Geomechanics[M]. Cambridge: Cambridge University Press, 2002: 65-67. [7] 殷有泉.岩石力学与岩石工程的稳定性[M].北京:北京大学出版社,2011:100-101. [8] 刘金龙,栾茂田,许成顺,等.Drucker-Prager准则参数特性分析[J].岩石力学与工程学报,2006,25(Z2):4009-4015. LIU Jinlong, LUAN Maotian, XU Chengshun, et al. Study on parametric characters of Drucker-Prager criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(Z2): 4009-4015.
[9] 郑颖人,沈珠江,龚晓南.岩石塑性力学原理[M].北京:中国建筑工业出版社,2002:55-61. [10] 丁祥,张广清.等向强化-软化Drucker-Prager材料强度参数演化[J].岩石力学与工程学报,2017,36(4):910-916. DING Xiang, ZHANG Guangqing. Variation of strength parameters of Drucker-Prager material with isotropic hardening and softening[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4): 910-916.
[11] 刘新荣,郭建强,王军保,等.基于能量原理盐岩的强度与破坏准则[J].岩土力学,2013,34(2):305-310. LIU Xinrong, GUO Jianqiang, WANG Junbao, et al. Investigation on mechanical properties and failure criterion of salt rock based on energy principles[J]. Rock and Soil Mechanics, 2013, 34(2): 305-310.
[12] 楚锡华,徐远杰.基于形状改变比能对M-C准则与D-P系列准则匹配关系的研究[J].岩土力学,2009, 30(10):2985-2990. CHU Xihua, XU Yuanjie. Studies on transformation from M-C criterion to Drucker-Prager criterions based on distortion energy density[J]. Rock and Soil Mechanics, 2009, 30(10): 2985-2990.
[13] HJIAJM, FORTIN J, SAXCE G. A complete stress update algorithm for the non-associated Drucker-Prager model including treatment of the apex[J]. International Journal of Engineering Science, 2003, 41(10): 1109-1143. [14] 张小波,赵光明,孟祥瑞.基于Drucker-Prager屈服准则的圆形巷道围岩弹塑性分析[J].煤炭学报,2013, 38(S1):30-37. ZHANG Xiaobo, ZHAO Guangming, MENG Xiangrui. Elastoplastic analysis of surrounding rock on circular roadway based on Drucker-Prager yield criterion[J].Journal of China Coal Society, 2013, 38(S1): 30-37.
[15] JIA Zheqiang, LI Cunbao, ZHANG Ru, et al. Energy evolution of coal at different depths under unloading conditions[J]. Rock Mechanics and Rock Engineering, 2019, 52: 4637-4349. [16] YONEDA Jun, OSHIMA Motoi, KIDA Masato, et al. Pressure core based onshore laboratory analysis on mechanical properties of hydrate-bearing sediments recovered during India’s National Gas Hydrate Program Expedition(NGHP) 02[J]. Marine and Petroleum Geology, 2019, 108: 482-501. [17] 左建平,陈岩,张俊文,等.不同围压作用下煤-岩组合体破坏行为及强度特征[J].煤炭学报,2016,41(11):60-67. ZUO Jianping, CHEN Yan, ZHANG Junwen, et al. Failure behavior and strength characteristics of coal-rock combined body under different confining pressures[J]. Journal of China Coal Society, 2016, 41(11): 2706-2713.
[18] 高霞,孟伟,张保勇.常规三轴条件下含瓦斯水合物煤体的强度特性[J].黑龙江科技大学学报,2020,30(6):634-640. GAO Xia, MENG Wei, ZHANG Baoyong. Strength characteristics of gas hydrate-coal mixture under conventional triaxial compression conditions[J]. Journal of Heilongjiang University of Science & Technology, 2020, 30(6): 50-56.
计量
- 文章访问数: 109
- HTML全文浏览量: 0
- PDF下载量: 83