• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

大间距煤柱与采动叠加影响下煤层应力演化及应用

郭振华, 陆壮, 杨涛, 席传鹏, 权军军, 唐俊青

郭振华, 陆壮, 杨涛, 席传鹏, 权军军, 唐俊青. 大间距煤柱与采动叠加影响下煤层应力演化及应用[J]. 煤矿安全, 2022, 53(4): 193-201.
引用本文: 郭振华, 陆壮, 杨涛, 席传鹏, 权军军, 唐俊青. 大间距煤柱与采动叠加影响下煤层应力演化及应用[J]. 煤矿安全, 2022, 53(4): 193-201.
GUO Zhenhua, LU Zhuang, YANG Tao, XI Chuanpeng, QUAN Junjun, TANG Junqing. Coal seam stress evolution and its application under the influence of large spacing coal pillar and mining superposition[J]. Safety in Coal Mines, 2022, 53(4): 193-201.
Citation: GUO Zhenhua, LU Zhuang, YANG Tao, XI Chuanpeng, QUAN Junjun, TANG Junqing. Coal seam stress evolution and its application under the influence of large spacing coal pillar and mining superposition[J]. Safety in Coal Mines, 2022, 53(4): 193-201.

大间距煤柱与采动叠加影响下煤层应力演化及应用

Coal seam stress evolution and its application under the influence of large spacing coal pillar and mining superposition

  • 摘要: 选取平煤八矿己15-22080工作面作为研究对象,通过FLAC3D数值模拟方法分析了采面应力演化特征,对瓦斯治理区域进行了分区划分。研究结果表明:在大间距丁组煤柱叠加戊组煤层开采影响下,工作面应力分布存在较大差距;应力集中现象分布于整条机巷,距机巷外口150~500 m范围内尤为严重,垂直应力最大值为27.5 MPa,增加了8 MPa;工作面靠近风巷一侧存在卸压区,最大卸压达10 MPa;应力增加使得煤体裂隙率最大降低约29 %,渗透性最大降低约64%;在高应力叠加区煤层瓦斯压力梯度增大,煤体渗透率降低,突出危险性更大;相反,卸压区内煤层渗透率增加,突出危险性更小;根据工作面不同区域突出危险性的不同,将工作面分为一般突出危险区、中等突出危险区与重度突出危险区。
    Abstract: The Ⅵ-22080 working face of Pingmei No.8 mine was selected as the research object. Through FLAC3D numerical simulation method, the stress evolution characteristics of the working face were analyzed, and the working face was divided into regions. The results show that the stress distribution of working face has a great difference under the joint influence of large spacing coal pillar of group Ⅳ coal seam and the coal seam mining of group Ⅴ coal seam. Stress concentration phenomenon is distributed in the whole haulage roadway, especially in the range of 150 m to 500 m from the outer entrance of the roadway. The maximum vertical stress of the roadway is 27.5 MPa, increased by 8 MPa. There is a pressure relief zone near the air-return roadway of the working face and the maximum pressure relief degree is 10 MPa. With the increase of stress, the fracture rate and permeability of coal decrease by 29 % and 64% respectively. In the high stress superimposed area, the gas pressure gradient increases, the permeability of coal body decreases, and the outburst risk increases. On the contrary, the permeability of coal seam in the pressure relief zone increases, and the outburst risk is smaller. According to the difference of outburst risk in different areas of working face, the working face can be divided into general outburst risk area, medium outburst risk area and severe outburst risk area.
  • [1] 袁亮.我国深部煤与瓦斯共采战略思考[J].煤炭学报,2016,41(1):1-6.

    YUAN Liang. Strategic thinking of simultaneous exploitation of coal and gas in deep mining[J]. Journal of China Coal Society, 2016, 41(1): 1-6.

    [2] 袁亮.煤炭精准开采科学构想[J].煤炭学报,2017,42(1):1-7.

    YUAN Liang. Scientific conception of precision coal mining[J]. Journal of China Coal Society, 2017, 42(1): 1-7.

    [3] YIN Wentao, FU Gui, YANG Chun, et al. Fatal gas explosion accidents on Chinese coal mines and the characteristics of unsafe behaviors: 2000—2014[J]. Safety Science, 2017, 92: 173-179.
    [4] YANG Chunli, LI Xiangchun, REN Yanbin, et al. Statistical analysis and countermeasures of gas explosion accident in coal mines[J]. Procedia Engineering, 2014, 84: 166-171.
    [5] 邹友峰,柴华彬.我国条带煤柱稳定性研究现状及存在问题[J].采矿与安全工程学报,2006,23(2):141.

    ZOU Youfeng, CHAI Huabin. Research status of strip coal pillar stability and its main problems in China[J]. Journal of Mining & Safety Engineering, 2006, 23(2): 141-145.

    [6] 李忠华,朱丽媛,唐治,等.大安山矿煤柱对下部煤层开采影响[J].辽宁工程技术大学学报(自然科学版),2014,33(6):741-744.

    LI Zhonghua, ZHU Liyuan, TANG Zhi, et al. Numerical simulation on the effects of coal pillar on mining of the lower coal seams in Daanshan Mine[J]. Journal of Liao-ning Technical University(Natural Science Edition), 2014, 33(6): 741-744.

    [7] 郑百生,谢文兵,窦林名,等.不规则煤柱作用下工作面开采的三维数值模拟[J].煤炭学报,2006,31(2):137.

    ZHENG Baisheng, XIE Wenbing, DOU Linming, et al. 3D simulation on caving of face affected by irregular pillor[J]. Journal of China Coal Society, 2006, 31(2): 137.

    [8] 刘萍,朱恒忠.煤柱影响下保护层开采的消突范围划分及效果评价[J].煤矿安全,2014,45(1):211-214.

    LIU Ping, ZHU Hengzhong. Eliminating outburst scope and effect evaluation of protective layer mining under the influence of coal pillar[J]. Safety in Coal Mines, 2014, 45(1): 211-214.

    [9] 高晓龙,何峰,王振伟.近距离下煤层过遗留煤柱应力集中区研究[J].山西焦煤科技,2013,37(7):50-53.

    GAO Xiaolong, HE Feng, WANG Zhenwei. Research on left over pillar stress concentration zone in close distance lower coal seam mining[J]. Shanxi Coking Coal Science & Technology, 2013, 37(7): 50-53.

    [10] 王永秀,齐庆新,陈兵,等.煤柱应力分布规律的数值模拟分析[J].煤炭科学技术,2004,32(10):59-62.

    WANG Yongxiu, QI Qingxin, CHEN Bing, et al. Analysis on digital simulation for stress distribution law of coal pillar[J]. Coal Science and Technology, 2004, 32(10): 59-62.

    [11] 罗吉安,王连国.近距离煤层煤柱下方底板应力分布规律[J].煤矿安全,2014,45(2):29-31.

    LUO Jian, WANG Liangguo. Floor stress distribution laws under coal pillar in close distance coal seams[J]. Safety in Coal Mines, 2014, 45(2): 29-31.

    [12] 张念超.多煤层煤柱底板应力分布规律及其应用[D].徐州:中国矿业大学,2016.
    [13] 张绪言,张百胜,康立勋,等.煤柱集中载荷特征及其对巷道围岩应力的影响[J].矿业安全与环保,2009, 36(5):6-8.

    ZHANG Xuyan, ZHANG Baisheng, KANG Lixun, et al. Characteristics of coal pillar’s concentrated load and its influence on surrounding rock stress of roadway[J]. Mining Safety & Environmental Protection, 2009, 36(5): 6-8.

    [14] 徐佑林,桂祥友,张辉,等.不同宽度煤柱下沿空掘巷数值模拟研究及应用[J].煤矿开采,2011,16(5):47-51.

    XU Youlin, GUI Xiangyou, ZHANG Hui, et al. Numerical simulation of driving roadway along gob with different wide coal-pillars and its application[J]. Coal Mining Technology, 2011, 16(5): 47-51.

    [15] Catrin Edelbro. Numerical modeling of observed fallouts in hard rock masses using an instantaneous cohesion-softening friction-hardening model[J]. Tunneling and Underground Space Technology, 2008, 24(4): 398.
    [16] 李文刚,王向东,程志恒,等.基于高位定向长钻孔的采空区瓦斯抽采技术研究[J].煤炭工程,2019,51(8):64-68.

    LI Wengang, WANG Xiangdong, CHENG Zhiheng, et al. Study on goaf gas drainage technology using high directional long borehole[J]. Coal Engineering, 2019, 51(8): 64-68.

    [17] 卢守青.基于等效基质尺度的煤体力学失稳及渗透性演化机制与应用[D].徐州:中国矿业大学,2016.
    [18] 安丰华.煤与瓦斯突出失稳蕴育过程及数值模拟研究[D].徐州:中国矿业大学,2014.
    [19] LIU Qingquan, CHENG Yuanping, ZHOU Hongxing, et al. A mathematical model of coupled gas flow and coal deformation with gas diffusion and Klinkenberg effects[J]. Rock Mechanicsand Rock Engineering, 2015, 48(3): 1163-1180.
    [20] 张荣.保护层开采上覆煤岩体走向被保护边界渗透率演化特征研究[D].徐州:中国矿业大学,2016.
    [21] 陈海栋.保护层开采过程中卸载煤体损伤及渗透性演化特征研究[D].徐州:中国矿业大学,2013.
计量
  • 文章访问数:  26
  • HTML全文浏览量:  0
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 发布日期:  2022-04-19

目录

    /

    返回文章
    返回