电脉冲对无烟煤官能团及甲烷吸附特性影响研究
Effect of electric pulse on functional groups and methane adsorption characteristics of anthracite coal
-
摘要: 利用电脉冲致裂煤体增渗实验系统,对贵州轿子山煤矿无烟煤进行电脉冲致裂实验,并结合工业分析、傅里叶红外光谱测试和等温吸附实验方法,研究了不同击穿电压条件下电脉冲致裂煤体的电流峰值、煤体官能团结构和吸附甲烷能力的演化规律。结果表明:煤样电脉冲击穿煤体的过程主要经历了热击穿、电击穿和残余阶段,同时,击穿煤样的电流峰值随着击穿电压的升高而增大,且呈现指数化趋势;电脉冲击穿煤样的官能团结构发生明显变化,CH吸收峰随着击穿电压的增加而升高,C=C、-CH3、-CH2、-OH吸收峰随击穿电压的提高而降低;电脉冲击穿煤样的甲烷极限吸附量a值都比原煤低,煤样吸附常数b值随击穿电压增加呈现出波动式的变化,表明电脉冲击穿煤体后,明显降低了煤样对甲烷的吸附能力,有利于煤层气的高效开采。Abstract: The experiment of electric pulse cracking of anthracite coal from Jiaozishan Coal Mine in Guizhou Province was carried out by using the electric pulse experimental system of fracturing and enhancing permeability of coal. Combined with industrial analysis, Fourier infrared spectroscopy and isothermal adsorption experimental methods, the changes of peak current, coal functional group structure and methane adsorption capacity under different breakdown voltages were studied. The results show that the process of electrical pulse breakdown of coal samples mainly goes through thermal breakdown, electrical breakdown and residual stages. Meanwhile, the peak current of breakdown coal samples increases with the increase of breakdown voltage and presents an exponential trend. The functional group structure of coal treated with electric pulse changes obviously, the CH absorption peak increases with the increase of breakdown voltage, while the absorption peaks of C=C, -CH3, -CH2 and -OH decrease. The limit adsorption capacity a value of high-voltage pulse impact coal is lower than that of raw coal, and the adsorption constant b value fluctuates with the increase of breakdown voltage, indicating that after coal treated with electric pulse, the adsorption capacity of coal is significantly reduced, which is conducive to the efficient exploitation of coalbed methane.
-
-
[1] 贾慧敏,闫玲,毛崇昊,等.煤层气储层毛管压力对煤层气开发效果的影响[J].煤矿安全,2020,51(5):6. JIA Huimin, YAN Ling, MAO Chonghao, et al. Influence of capillary pressure on CBM reservoir development effect[J]. Safety in Coal Mines, 2020, 51(5): 6.
[2] 谢和平,周宏伟,薛东杰,等.我国煤与瓦斯共采:理论、技术与工程[J].煤炭学报,2014,39(8):1391. XIE Heping, ZHOU Hongwei, XUE Dongjie, et al. Theory, technology and engineering of simultaneous exploitation of coal and gas in China[J]. Journal of China Coal Society, 2014, 39(8): 1391.
[3] 林柏泉,闫发志,朱传杰,等.基于空气环境下的高压击穿电热致裂煤体实验研究[J].煤炭学报,2016,41(1):94-99. LIN Baiquan, YAN Fazhi, ZHU Chuanjie, et al. Experimental study on crushing coal by electric and heat in the process of high-voltage breakdown in the air condition[J]. Journal of China Coal Society, 2016, 41(1): 94-99.
[4] 王宇红.电脉冲储层处理技术在煤层气中的试验与应用[J].科技传播,2011(9):125. [5] 秦玉金,陈煜朋,姜文忠,等.深部煤层瓦斯赋存机制研究现状及展望[J].煤矿安全,2020,51(5):10-15. QIN Yujin, CHEN Yupeng, JIANG Wenzhong, et al. Research status and prospect of gas occurrence mechanism in deep coal seam[J]. Safety in Coal Mines, 2020, 51(5): 10-15.
[6] Fazhi Yan, Baiquan Lin, Chuanjie Zhu, et al. Experimental investigation on anthracite coal fragmentation by high-voltage electrical pulses in the air condition: Effect of breakdown voltage[J]. Fuel, 2016, 183: 583. [7] 李春明,赵胤翔,赵金昌,等.预制裂纹对水中高压电脉冲致裂煤岩体的影响[J].煤矿安全,2021,52(7):27-32. LI Chunming, ZHAO Yinxiang, ZHAO Jinchang, et al. Effect of pre-crack on coal and rock mass induced by high voltage electric pulse in water[J]. Safety in Coal Mines, 2021, 52(7): 27-32.
[8] 冯兴武,王树森,余小燕,等.有效应力对煤层气储层各向异性的影响[J].煤矿安全,2020,51(2):15-19. FENG Xingwu, WANG Shusen, YU Xiaoyan, et al. Experimental study on the influence of effective stress on the anisotropy of high-rank coalbed methane reservoir[J]. Safety in Coal Mines, 2020, 51(2): 15-19.
[9] 林柏泉,王一涵,闫发志,等.NaCl溶液对电脉冲致裂煤体孔隙结构影响的试验研究[J].煤炭学报,2018, 43(5):1328-1334. LIN Baiquan, WANG Yihan, YAN Fazhi, et al. Experimental study of the effect of NaCl solution on the pore structure of coal body with high-voltage electrical pulsetreatments[J]. Journal of China Coal Society, 2018, 43(5): 1328-1334.
[10] 卢红奇,聂百胜,陈秀娟,等.基于液电效应的高压电脉冲对煤体致裂实验研究[J].中国安全生产科学技术,2020(10):83-88. LU Hongqi, NIE Baisheng, CHEN Xiujuan, et al. Experimental research on coal crushing by using high -voltage electrical pulse based on electrohydraulic effect[J]. Journal of Safety Science and Technology, 2020(10):83-88.
[11] 闫发志.基于电破碎效应的脉冲致裂煤体增渗试验研究[D].徐州:中国矿业大学,2017. [12] 鲍先凯,曹嘉星,赵刚,等.电脉冲水压致裂煤岩超声波检测评价方法[J].油气藏评价与开发,2020(4):81-86. BAO Xiankai, CAO Jiaxing, ZHAO Gang, et al. Ultrasonic testing and evaluation method for hydraulicfracturing coal by voltage pulse[J]. Reservoir Evaluation and Development, 2020(4): 81-86.
[13] 姜永鑫,李忠辉,曹康,等.不同加载速率下煤岩声发射与红外辐射特征研究[J].煤炭科学技术,2021,49(7):79-84. JIANG Yongxin, LI Zhonghui, CAO Kang, et al. Study on coal and rock acoustic emission and infrared radiation characteristics under different loading rates[J]. Coal Science and Technology, 2021, 49(7): 79-84.
[14] 马立强,张垚,孙海,等.煤岩破裂过程中应力对红外辐射的控制效应试验[J].煤炭学报,2017,42(1):140-147. MA Liqiang, ZHANG Yao, SUN Hai, et al. Experimental study on dependence of infrared radiation on stress for coal fracturing process[J]. Journal of China Coal Society, 2017, 42(1): 140-147.
[15] 李庆钊,林柏泉,赵长遂,等.基于傅里叶红外光谱的高温煤焦表面化学结构特性分析[J].中国电机工程学报,2011,31(32):46-52. LI Qingzhao, LIN Baiquan, ZHAO Changsui,et al. Chemical structure analysis of coal char surface based on fourier-transform infrared spectrometer[J]. Proceedings of the CSEE, 2011, 31(32):46-52.
[16] 秦跃平,史浩洋,乔珽,等.关于煤粒瓦斯解吸经验公式的探讨[J].矿业安全与环保,2015,42(1):109. QIN Yueping, SHI Haoyang, QIAO Ting, et al. Discussion on empirical formula for gas desorption of coal particles[J]. Mining Safety & Environmental Protection, 2015, 42(1): 109.
[17] 林海飞,蔚文斌,李树刚,等.低阶煤孔隙结构对瓦斯吸附特性影响的试验研究[J].煤炭科学技术,2016, 44(6):127-133. LIN Haifei, WEI Wenbin, LI Shugang, et al. Experiment study on pore structure of low rank coal affectedto gas adsorption features[J]. Coal Science and Technology, 2016, 44(6): 127-133.
[18] 王刚,程卫民,潘刚.温度对煤体吸附瓦斯性能影响的研究[J].安全与环境学报,2012,12(5):231. WANG Gang, CHENG Weimin, PAN Gang. Influence of temperature on coal’s adsorbing capability[J]. Journal of Safety and Environment, 2012, 12(5):231.
-
期刊类型引用(2)
1. 郑行行,甘胤,杨晶晶,林华颖. 电脉冲制裂煤体增透技术研究. 煤. 2025(03): 19-22+84 . 百度学术
2. 彭建宇,李嘉强,张凤鹏,杜川. 高压脉冲作用下岩石的击穿特性与物理力学参数关系试验研究. 金属矿山. 2023(03): 100-105 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 61
- HTML全文浏览量: 5
- PDF下载量: 28
- 被引次数: 5