• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

滕州矿区3#煤综放开采顶板导水断裂带高度预测模型

曹始友, 董方营, 陈大林, 张历峰, 徐德宝, 王松, 王鹏, 尹会永, 郑永杰

曹始友, 董方营, 陈大林, 张历峰, 徐德宝, 王松, 王鹏, 尹会永, 郑永杰. 滕州矿区3#煤综放开采顶板导水断裂带高度预测模型[J]. 煤矿安全, 2022, 53(3): 236-242.
引用本文: 曹始友, 董方营, 陈大林, 张历峰, 徐德宝, 王松, 王鹏, 尹会永, 郑永杰. 滕州矿区3#煤综放开采顶板导水断裂带高度预测模型[J]. 煤矿安全, 2022, 53(3): 236-242.
CAO Shiyou, DONG Fangying, CHEN Dalin, ZHANG Lifeng, XU Debao, WANG Song, WANG Peng, YIN Huiyong, ZHENG Yongjie. A prediction model for height of water-conducting fracture zone in fully mechanized caving of 3# coal seam in Tengzhou Mining Area[J]. Safety in Coal Mines, 2022, 53(3): 236-242.
Citation: CAO Shiyou, DONG Fangying, CHEN Dalin, ZHANG Lifeng, XU Debao, WANG Song, WANG Peng, YIN Huiyong, ZHENG Yongjie. A prediction model for height of water-conducting fracture zone in fully mechanized caving of 3# coal seam in Tengzhou Mining Area[J]. Safety in Coal Mines, 2022, 53(3): 236-242.

滕州矿区3#煤综放开采顶板导水断裂带高度预测模型

A prediction model for height of water-conducting fracture zone in fully mechanized caving of 3# coal seam in Tengzhou Mining Area

  • 摘要: 为精确预测滕州矿区山西组3#煤综放开采顶板导水断裂带发育高度,以滕州矿区18个采煤工作面导水断裂带高度和各主控因素实测数据为基础,运用SPSS软件对采厚、采深、煤层倾角、走向长度、倾向长度、顶板厚度6个因素进行相关性分析,并构建了导水断裂带高度多元线性回归预测模型;以藤县煤田4个工作面为例,分别采用“三下规范”公式、中国矿业大学(北京)总结经验公式和回归模型对导水断裂带高度进行计算并进行误差分析对比;借助UDEC数值模拟分析进行辅助验证。结果表明:本模型预测值与实测值更接近,较经验公式计算结果精度更高,误差基本控制在8%以内,提高了预测精度。
    Abstract: In order to accurately predict the development height of water-conducting fracture zone in the roof of fully mechanized caving coal of No.3 coal seam in Tengzhou Mining Area, based on the measured data of water-conducting fracture zone height and main control factors of 18 working faces in Tengzhou Mining Area, we use SPSS software to carry out correlation analysis on six factors such as mining thickness, mining depth, coal seam dip angle, strike length, dip length and roof thickness, and build the water-conducting fractured zone height of multivariate linear regression forecast model. Finally, four working faces in TengxianCoalfield are taken as examples to calculate the height of water-conducting fracture zone and compare the error analysis by using the regulations for coal mining under buildings, water bodies and railways, standard formula and regression model. In addition, Tengdong Coal Mine also used UDEC numerical simulation analysis for auxiliary verification. The results show that the model’s predicted values in this paper are closer to the measured values(the error is controlled within 8%), and the accuracy is higher than that of the empirical formula.
  • [1] 田乾乾,韩建光,易洪春.我国华北地区石炭二叠纪成煤作用[J].煤炭技术,2009,28(3):118-121.

    TIAN Qianqian, HAN Jianguang, YI Hongchun. Coal formation in Permian-Carboniferous of north China[J]. Coal Technology, 2009, 28(3): 118-121.

    [2] 张坤.厚松散沙层下富水顶板采煤突水溃沙危险性分区[J].煤矿安全,2018,49(5):191.

    ZHANG Kun. Risk zoning of water inrush and sand bursting under water abundance roof and thick loose sand layer[J]. Safety in Coal Mines, 2018, 49(5): 191.

    [3] 王明立,张玉卓,张华兴.急斜煤层开采覆岩非均衡破坏机理分析[J].采矿与安全工程学报,2010,27(4):558-561.

    WANG Mingli, ZHANG Yuzhuo, ZHANG Huaxing. A theoretical analysis on asymmetric failure of overburden in steep caol mining[J]. Journal of Mining & Safety Engineering, 2010, 27(4): 558-561.

    [4] 郭东亮,赵德深,刘磊,等.采动和渗流共同作用下覆岩破坏形态研究[J].煤矿安全,2015,46(12): 57-60.

    GUO Dongliang, ZHAO Deshen, LIU Lei, et al. Study on failure mode of overburden under mining and seepage[J]. Safety in Coal Mines, 2015, 46(12): 57-60.

    [5] 王志强,赵景礼,李泽荃.错层位内错式采场“三带”高度的确定方法[J].采矿与安全工程学报,2013,30(2):231-236.

    WANG Zhiqiang, ZHAO Jingli, LI Zequan. Determination of height of “three zone” in the stope with stagger position and internal misaligned roadway layout[J]. Journal of Mining & Safety Engineering, 2013, 30(2): 231-236.

    [6] 马莲净,赵宝峰,曹海东.特厚煤层分层综放开采软弱覆岩破坏规律研究[J].安全与环境学报,2019,19(2):474-481.

    MA Lianjing, ZHAO Baofeng, CAO Haidong. Probe into the failure trend of the loosely overlying strata with the fully-mechanized sub-level caving in the ultra-thick coal seam[J]. Journal of Safety and Environment, 2019, 19(2): 474-481.

    [7] 施龙青,辛恒奇,翟培合,等.大采深条件下导水断裂带高度计算研究[J].中国矿业大学学报,2012,41(1):37-41.

    SHI Longqing, XIN Hengqi, ZHAI Peihe, et al. Calculating the height of water flowing fracture zone in deep mining[J]. Journal of China University of Mining & Tech-nology, 2012, 41(1): 37-41.

    [8] 郭文兵,娄高中,赵保才.芦沟煤矿软硬交互覆岩放顶煤开采导水裂缝带高度研究[J].采矿与安全工程学报,2019,36(3):519-526.

    GUO Wenbing, LOU Gaozhong, ZHAO Baocai. Study on the height of water-conductive fracture zone in alternate overburden of soft and hard with top coal caving mining in Lugou coal mine[J]. Journal of Mining & Safety Engineering, 2019, 36(3): 519-526.

    [9] 李响,魏久传,张伟杰,等.基于微震监测和现场实测的煤层顶板导水裂缝带发育高度研究[J].中国科技论文,2020,15(9):1031-1037.

    LI Xiang, WEI Jiuchuan, ZHANG Weijie, et al. Determination of the height of water-conducting fracture zone in the roof based on microseismic monitoring and field measurement[J]. China Sciencepaper, 2020, 15(9): 1031-1037.

    [10] 栾元重,于水,胡军伟,等.充填开采覆岩导水裂缝带高度发育规律研究[J].金属矿山,2021(6):216.

    LUAN Yuanzhong, YU Shui, HU Junwei, et al. Study on height development law of water flowing fractured zone in overburden of filling mining face[J]. Metal Mine, 2021(6): 216.

    [11] 董检平,李江华,姚曹节,等.厚松散层综放开采覆岩破坏发育规律研究[J].煤矿安全,2015,46(9):47.

    DONG Jianping, LI Jianghua, YAO Caojie, et al. Study on overburden failure development laws of thick unconsolidated strata in fully mechanized caving mining[J]. Safety in Coal Mines, 2015, 46(9): 47.

    [12] 刘义新.采动覆岩破坏规律的数值模拟[J].煤矿安全,2013,44(12):198-200.

    LIU Yixin. Numerical simulation of mining overburden failure law[J]. Safety in Coal Mines, 2013, 44(12): 198-200.

    [13] 徐海红,乔皎,王铮.小庄矿井采煤对地下水的影响及保水采煤措施[J].煤田地质与勘探,2014,42(6):64-67.

    XU Haihong, QIAO Jiao, WANG Zheng. The influence of underground coal mining on groundwater and measures for water conservation while mining in Xiaozhuang mine[J]. Coal Geology & Exploration, 2014, 42(6): 64-67.

    [14] 许家林,朱卫兵,王晓振.基于关键层位置的导水断裂带高度预计方法[J].煤炭学报,2012,37(5):762.

    XUE Jialin, ZHU Weibing, WANG Xiaozhen. New method to predict the height of fractured water-conducting zone by location of key strata[J]. Journal of China Coal Society, 2012, 37(5): 762.

    [15] 王晓振,许家林,韩红凯,等.顶板导水裂隙高度随采厚的台阶式发育特征[J].煤炭学报,2019,44(12):3740-3749.

    WANG Xiaozhen, XU Jialin, HAN Hongkai, et al. Stepped development characteristic of water flowing fracture height with variation of mining thickness[J]. Journal of China Coal Society, 2019, 44(12): 3740.

    [16] 尹尚先,徐斌,徐慧,等.综采条件下煤层顶板导水裂缝带高度计算研究[J].煤炭科学技术,2013,41(9):138-142.

    YIN Shangxian, XU Bin, XU Hui, et al. Study on height calculation of water conducted fractured zone caused by fully mechanized mining[J]. Coal Science and Technology, 2013, 41(9): 138-142.

    [17] 朱伟.中硬覆岩综放开采裂缝带发育高度研究[J].煤矿安全,2013,44(2):61-63.

    ZHU Wei. Development height of study of fully mechanized caving mining fractured zone with medium-hard overburden[J]. Safety in Coal Mines, 2013, 44(2): 61-63.

    [18] 王国华,尹尚先,刘明,等.综采条件下导水断裂带高度预测方法[J].煤矿安全,2017,48(11):187-190.

    WANG Guohua, YIN Shangxian, LIU Ming, et al. Height prediction methods of water flowing fractured zone under condition of fully-mechanized mining[J]. Safety in Coal Mines, 2017, 48(11): 187-190.

    [19] 张玉军,张志巍.煤层采动覆岩破坏规律与控制技术研究进展[J].煤炭科学技术,2020,48(11):85-97.

    ZHANG Yujun, ZHANG Zhiwei. Research of mining overlying stratas failure law and control technology[J]. Coal Science and Technology, 2020, 48(11): 85-97.

    [20] 陈佩佩,刘鸿泉,张刚艳.海下综放开采防水安全煤岩柱厚度的确定[J].煤炭学报,2009,34(7):875.

    CHEN Peipei, LIU Hongquan, ZHANG Gangyan. Determination of waterproof rock pillar with the top caving under sea[J]. Journal of China Coal Society, 2009, 34(7): 875-880.

    [21] 杜时贵,翁欣海.煤层倾角与覆岩变形破裂分带[J].工程地质学报,1997(3):20-26.
    [22] 郭文兵,娄高中.覆岩破坏充分采动程度定义及判别方法[J].煤炭学报,2019,44(3):755-766.

    GUO Wenbing, LOU Gaozhong. Definition and distinguishing method of critical mining degree of overburden failure[J]. Journal of China Coal Society, 2019, 44(3): 755-766.

    [23] 国家煤矿安监局,建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[M].北京:煤炭工业出版社,2017.
    [24] 武强,赵苏启,董书宁,等.煤矿防治水手册[M].北京:煤炭工业出版社,2013.
    [25] 余北建.寺家庄煤矿15106采煤工作面覆岩裂隙“三带”规律研究[J].中国矿业,2021,30(3):193.

    YU Beijian. Study on the “three zones” of overburden fracture in the 15106 coal face of Sijiazhuang coal mine[J]. China Mining Magazine, 2021, 30(3): 193.

    [26] 陈建鹏,胡涛,李柱和,等.南阳煤矿两带高度UDEC数值模拟研究[J].煤炭技术,2020,39(4):133-135.

    CHEN Jianpeng, HU Tao, LI Zhuhe, et al. UDEC numerical simulation of two-zone height in Nanyang Coal Mine[J]. Coal Technology, 2020, 39(4): 133-135.

    [27] 高富强.数值模拟在地下煤矿开采岩石力学问题中的应用[J].采矿与岩层控制工程学报,2019,1(2):21-28.

    GAO Fuqiang. Use of numerical modeling for analyzing rock mechanic problems in underground coal mine practices[J]. Journal of Mining and Strata Control Engineering, 2019, 1(2): 21-28.

  • 期刊类型引用(12)

    1. 张平松,许时昂,傅先杰,吴荣新. 煤层采动巨厚松散层全断面监测及内部变形特征. 煤炭学报. 2024(01): 628-644 . 百度学术
    2. 贺丹,段中会,姬永涛,王鑫,付德亮,高翔,张丽维,刘峰. 厚松散层下高强度综放开采地表沉陷规律研究. 煤炭技术. 2024(06): 24-27 . 百度学术
    3. 周华,俞晓飞,叶异冬. 高精度矿区地表GPS形变数据三维重构技术. 现代测绘. 2024(03): 54-58 . 百度学术
    4. 石国牟,张丽佳,胡振琪,浮耀坤. 陕北黄土沟壑地貌地表移动变形特征研究. 煤炭科学技术. 2023(04): 157-165 . 百度学术
    5. 张彦宾,陈攀,尹士献,张文志. 赵固二矿岩移参数反演拟合及工作面开采方案优化. 河南理工大学学报(自然科学版). 2023(04): 47-54 . 百度学术
    6. 徐飞亚,郭文兵,王晨. 浅埋深厚煤层高强度开采地表沉陷规律研究. 煤炭科学技术. 2023(05): 11-20 . 百度学术
    7. 唐世界,陈攀. 特厚冲积层下开采覆岩移动及地表变形特征研究. 煤炭技术. 2023(09): 91-96 . 百度学术
    8. 张深. 煤矿开采地表沉陷预测及其防治研究. 能源与环保. 2022(07): 314-318 . 百度学术
    9. 张琰君,贺福帅,阎跃观,朱元昊. 地表移动影响范围与地质采矿条件关系数值模拟. 科学技术与工程. 2022(27): 11864-11870 . 百度学术
    10. 蔡浩旗. 常村煤矿切顶卸压对村庄保护煤柱的影响. 煤. 2022(12): 99-102 . 百度学术
    11. 周婷婷,苏丽娟,刘辉,朱晓峻. 神东矿区地表移动参数变化规律及影响机制. 煤田地质与勘探. 2021(03): 189-198 . 百度学术
    12. 穆驰,余学义,张冬冬,毛旭魏. 黄土沟壑区采动滑坡变形规律分析. 煤矿安全. 2021(08): 208-217 . 本站查看

    其他类型引用(14)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 26
出版历程
  • 发布日期:  2022-03-19

目录

    /

    返回文章
    返回