• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

大型物理三维模拟实验中传感器布置优化方法研究

郝昱宇, 李树刚

郝昱宇, 李树刚. 大型物理三维模拟实验中传感器布置优化方法研究[J]. 煤矿安全, 2022, 53(3): 132-139.
引用本文: 郝昱宇, 李树刚. 大型物理三维模拟实验中传感器布置优化方法研究[J]. 煤矿安全, 2022, 53(3): 132-139.
HAO Yuyu, LI Shugang. Research on optimization method of sensor placement in large three-dimensional physical similarity simulation[J]. Safety in Coal Mines, 2022, 53(3): 132-139.
Citation: HAO Yuyu, LI Shugang. Research on optimization method of sensor placement in large three-dimensional physical similarity simulation[J]. Safety in Coal Mines, 2022, 53(3): 132-139.

大型物理三维模拟实验中传感器布置优化方法研究

Research on optimization method of sensor placement in large three-dimensional physical similarity simulation

  • 摘要: 针对煤与瓦斯安全共采大型物理三维模拟实验中传感器布置问题,通过数值模拟、理论分析找寻瓦斯运移及压应力变化关键信息点,优化传感器布置参数,提高模拟实验相似性与采集效率;首先通过数值模拟建立瓦斯及压应力分布图谱,通过分析该分布规律中变化关键点信息;再次根据该位置点信息建立分时段、选择性数据采集方案,自主设计分布式通讯采集板卡,实现了单位时间下动态区域数据采集系统,降低了单位时间下数据采集量;最终通过差值算法对采样数据进行处理,获得了不同风速对瓦斯运移影响,并对开采至60 m处瓦斯富集区域进行了推断,与此同时,建立了沿煤层走向各个阶段下垂直应力分布图谱。通过将数据与微震监测结果进行比较,其结果互相吻合。
    Abstract: Aiming at the problem of sensor layout in large-scale physical three-dimensional simulation experiment of safe co-mining of coal and gas, through numerical simulation, theoretical analysis, we find the key information points of gas migration and compressive stress changes, optimize sensor layout parameters, and improve similarity simulation similarity and collection efficiency. First of all, we establish the gas and compressive stress distribution map through numerical simulation, and analyze the key point information of changes in the distribution law. And then, we use this location point information to establish time-divided and selective data collection plan, and a distributed communication collection board was designed to realize a dynamic area data collection system per unit time and reduce the amount of data collection per unit time. Finally, the sampled data was processed by the differential value, the influence of different wind speeds on gas migration was obtained and the gas enrichment area at 60 m was inferred. At the same time, the vertical stress distribution at various stages along the coal seam strike was established. By comparing the data with the microseismic monitoring results, the results agree with each other.
  • [1] Jie Liu, Heng Ouyang, Xu Han, et al. Optimal sensor placement for uncertain inverse problem of structural parameter estimation[J]. Mechanical Systems and Signal Processing, 2021, 160(5): 107914.
    [2] Suryanarayana G, Arroyo J, Helsen L, et al. A Data Driven Method for Optimal Sensor Placement in Multi-Zone Buildings[J]. Energy and Buildings, 2021: 110956.
    [3] Cumbo R, Mazzanti L, Tamarozzi T, et al. Advanced optimal sensor placement for Kalman-based multiple-input estimation[J]. Mechanical Systems and Signal Processing, 2021, 160(3): 107830.
    [4] Mohebbi Mohtasham, Dadkhah Hamed. Optimal Placement of Sensors for Controlling Smart Base Isolation Systems[J]. International Journal of Structural Stability & Dynamics, 2021, 21(4): 2150055.
    [5] Bo Gao, Zhihui Bai, Yubo Song. Optimal Three-Dimensional Sensor Placement for Cable-Stayed Bridge Based on Dynamic Adjustment of Attenuation Factor Gravitational Search Algorithm[J/OL]. Shock and Vibration, 2021: 6664188.https://doi.org/10.1155/2021/6664188.
    [6] Kuantama E, Tarca R, Dzitac S, et al. The Design and Experimental Development of Air Scanning Using a Sniffer Quadcopter[J]. Sensors, 2019, 19(18): 3849.
    [7] 宋钰.采空区瓦斯运移规律实验与数值模拟研究[D].西安:西安科技大学,2014.

    SONG Yu. The experimental and numerical simulation research of the gas migration rules in goaf[D]. Xi’an: Xi’an University of Science and Technology, 2014.

    [8] 李晓飞.煤层双重孔隙模型及采空区瓦斯运移的数值模拟研究[D].北京:中国矿业大学(北京),2017.

    LI Xiaofei. Research on numerical simulation about double porosity model of coal seam and gas migration in goaf[D]. Biejing: China University of Mining & Technology(Beijing), 2017.

    [9] 罗振敏,郝苗,苏彬,等.采空区瓦斯运移规律实验及数值模拟[J].西安科技大学学报,2020,40(1):31.

    LUO Zhenmin, HAO Miao, SU Bin, et al. Experiments and numerical simulation research on gas migration in goaf[J]. Journal of Xi’an University of Science and Technology, 2020, 40(1): 31.

    [10] 蔡永博,王凯,袁亮,等.深部煤岩体卸荷损伤变形演化特征数值模拟及验证[J].煤炭学报,2019,44(5):1527-1535.

    CAI Yongbo, WANG Kai, YUAN Liang, et al. Numerical simulation and verification of unloading damage evolution characteristics of coal and rock mass during deep mining[J]. Journal of China Coal Society, 2019, 44(5): 1527-1535.

    [11] 李树刚,魏宗勇,林海飞,等.煤与瓦斯共采三维大尺度物理模拟实验系统的研制与应用[J].煤炭学报,2019,44(1):236-245.

    LI Shugang, WEI Zongyong, LIN Haifei, et al. Research and development of 3D large-scale physical simulation experimental system for coal and gas co-extraction and its application[J]. Journal of China Coal Society, 2019, 44(1): 236-245.

    [12] Junhui Fu, Haitao Sun, Guangcai Wen, et al. Three-Dimensional Physical Similarity Simulation of the Deformation and Failure of a Gas Extraction Surface Well in a Mining Area[J]. Advances in Civil Engineering, 2020(10): 1-12.
    [13] 魏宗勇,李树刚,林海飞,等.大采高综采覆岩裂隙演化特征三维实验研究[J].西安科技大学学报,2020,40(4):589-598.

    WEI Zongyong, LI Shugang, LIN Haifei, et al. Three-dimensional experimental study on evolution characteristics of overburden fractures in fully mechanized mining with large mining height[J]. Journal of Xi’an University of Science and Technology, 2020, 40(4): 589-598.

    [14] 成小雨.厚煤层综采覆岩破断及裂隙演化机理三维大型物理模拟研究[D].西安:西安科技大学,2018.

    CHENG Xiaoyu. Research on mechanism of overburden breaking and fracture evolution in thick coal seam fully mechanized mining based on three-dimensional large-scale physical simulation[D]. Xi’an: Xi’an University of Science and Technology, 2018.

    [15] Xiaoqing Yi, Liling Hao, Fangfang Jiang, et al. Synchronous acquisition of multi-channel signals by single-channel ADC based on square wave modulation[J]. Review of Scientific Instruments, 2017, 88(8): 085108.
    [16] Zhu Zhang, Nian Wen Xiang, Li Jian Ding. A high-precision synchronous signal acquisition device[J]. Review of Scientific Instruments, 2020, 91(4): 044702.
    [17] Yazhou Yuan, Qimin Xu, Xinping Guan, et al. Industrial high-speed wireless synchronous data acquisition system with real-time data compression[J]. Measurement, 2013, 46(9): 3482-3487.
    [18] Liu Wenyi, Yan Hongcheng. Design of high speed synchronous multi-channel data acquisition and processing system based on TMS320C6747[C]//2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE). IEEE, 2010: 758-760.
    [19] Peng Li Hui, Wu Hong Xiu, Zhang Jun, et al. A multiple-channel system for synchronous acquisition and analysis of neural electrophysiological signals[J]. Acta Physiological Sinica, 2001, 53(1): 79-82.
    [20] Xin Xiao, Baoping Tang, Lei Deng. High accuracy synchronous acquisition algorithm of multi-hop sensor networks for machine vibration monitoring[J]. Measurement, 2017, 102: 10-19.
计量
  • 文章访问数:  32
  • HTML全文浏览量:  7
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 发布日期:  2022-03-19

目录

    /

    返回文章
    返回