浅埋煤层群重复采动覆岩运移及裂隙演化规律研究
Research on overburden movement and fracture evolution of repeated mining in shallow coal seams group
-
摘要: 为了准确掌握单一煤层和煤层群开采覆岩裂隙演化规律及分布形态特征,通过物理相似模拟实验、现场钻孔勘探、理论计算等方法分析煤层开采过程中覆岩运移破断特征及采动裂隙的分布形态。结果表明:在重复采动条件下,覆岩出现离层裂隙和纵向裂隙并伴随超前裂隙的产生,形成“采空区-工作面”和“采空区-采空区-工作面”结构时,覆岩裂隙经历产生、扩张、闭合、再产生、贯通、再闭合等6个动态循环变化阶段;煤层群在一次采动时形成“梯形”裂隙区,二次及多次采动下,覆岩受上覆载荷作用,裂隙区向工作面两侧煤柱扩展,上煤层受本煤层边界煤柱和下煤层开采形成的“悬臂岩梁”支撑影响,使工作面两侧裂隙明显高于工作面中部,覆岩形成“M”形裂隙分布形态;覆岩受采动影响产生周期性破断,以单岩层或多岩层同时产生变形、运移、破断垮落,由此可见,覆岩中存在控制上部岩层的硬岩层和其控制岩层以组合梁的形式同步运移、破断。根据覆岩破断特征建立了基于Winkler弹性地基煤层群重复采动覆岩破断特征的组合岩梁力学模型,由模型计算得到覆岩裂隙演化高度和相似模拟实验及现场所测高度相近,由此表明,该模型可作为浅埋煤层群重复采动覆岩裂隙演化高度计算的依据。Abstract: In order to accurately grasp the evolution laws and distribution characteristics of the overburden cracks in the mining of a single coal seam and coal seam group, physical similar simulation experiments, on-site drilling exploration, theoretical calculations and other methods are used to analyze the characteristics of overburden migration and fracture and the characteristics of mining cracks during coal mining. The research results show that under repeated mining conditions, stratified cracks and longitudinal cracks appear in overlying rocks accompanied by advanced cracks. In forming a structure of “goaf-workface” and “goaf-goaf-workface”, the overburden fissures experienced six dynamic cyclical stages of generation, expansion, closure, re-generation, penetration, and re-closure. The coal seams group forms a “trapezoidal” fissure area during a mining. Under secondary and multiple mining operations, the overburden is affected by the overlying load. The influence of the “cantilever beam” formed by the coal pillars at the boundary of the coal seam and the mining of the lower coal seam makes the fissures on both sides of the working face significantly higher than the middle of the working face, and the overlying rock forms an “M”-shaped fissure distribution pattern. The overburden rock is periodically broken under the influence of mining, and deformation, migration and fracture collapse occur simultaneously in single or multi-rock strata. It can be seen that there is a hard rock layer that controls the upper rock layer and its control rock layer moves and breaks simultaneously in the form of composite beams. According to the fracture characteristics of the overburden rock, a composite rock beam mechanical model based on the failure characteristics of the repeated mining of the Winkler elastic foundation coal seam group is established. The evolution height of the overburden rock fissures calculated from the model is similar to the height measured in the similar simulation experiment and the site, which shows that this model can be used as a basis for calculating the evolution height of overburden cracks in the shallow coal seams group that are repeatedly mined.
-
-
[1] 黄庆享,曹健,贺雁鹏,等.浅埋近距离煤层群分类及其采场支护阻力确定[J].采矿与安全工程学报,2018, 35(6):1177-1184. HUANG Qingxiang, CAO Jian, HE Yanpeng, et al. Classification of shallow buried close seams group and support resistance determination[J]. Journal of Mining & Safety Engineering, 2018, 35(6): 1177-1184.
[2] 付兴,王鑫,苏志刚,等.浅埋极近距离采空区下工作面矿压显现规律研究[J].煤炭科学技术,2019,47(7):149-155. FU Xing, WANG Xin, SU Zhigang, et al. Study on law of strata behavior in shallow-buried working face under contiguous gobs[J]. Coal Science and Technology, 2019, 47(7): 149-155.
[3] 王孝义,宋选民,陈春慧.极近距煤层矿压显现强度的间距影响规律研究[J].采矿与安全工程学报,2016, 33(1):116-121. WANG Xiaoyi, SONG Xuanmin, CHEN Chunhui. The impact study on strata behavior laws of different coal seam spacing in ultra closed coal seams[J]. Journal of Mining & Safety Engineering, 2016, 33(1): 116-121.
[4] 何富连,康庆涛,殷帅峰,等.近距离煤层顶板煤柱集中应力影响机制[J].采矿与安全工程学报,2020,37(6):1077-1083. HE Fulian, KANG Qingtao, YIN Shuaifeng, et al. Influence mechanism of concentrated stress on coal roof pillars of close coal seam[J]. Journal of Mining & Safety Engineering, 2020, 37(6): 1077-1083.
[5] 杨军辉,鞠新颖,冯泽康,等.近距离煤层出煤柱矿压显现规律数值模拟[J].煤炭技术,2017,36(1):42. YANG Junhui, JU Xinxing, FENG Zekang, et al. Numerical smiulation of mine strata pressure behavior law during working face out of pillar in close distance seams[J]. Coal Technology, 2017, 36(1): 42.
[6] 刘治国.近距离煤层采空区水害探测与防治[J].煤矿开采,2017,22(4):90-93. LIU Zhiguo. Exploration and prevention of goaf water of contiguous coal seams[J]. Coal Mining Technology, 2017, 22(4): 90-93.
[7] 苏学贵,宋选民,原鸿鹄,等.受上覆采空区影响的巷道群稳定性控制研究[J].采矿与安全工程学报,2016,33(3):415-422. SU Xuegui, SONG Xuanmin, YUAN Honghu, et al. Stability control of the roadway group under the influence of overlying goaf[J]. Journal of Mining & Safety Engineering, 2016, 33(3): 415-422.
[8] 王超,伍永平,黄小平.复杂围岩条件下巷道底板反拱支护失效机制及控制[J].采矿与安全工程学报,2019,36(5):959-967. WANG Chao, WU Yongping, HUANG Xiaoping. Mechanism of floor failure of roadway supported by inverted arch under complicated surrounding rocks and its control[J]. Journal of Mining & Safety Engineering, 2019, 36(5): 959-967.
[9] 徐佑林,许猛堂,程利兴.强烈动压影响巷道再造承载拱控制原理与试验研究[J].采矿与安全工程学报,2018,35(6):1135-1141. XU Youlin, XU Mengtang, CHENG Lixing. Control mechanism and experimental study on renewable bearing arch in soft and mudding roadway under dynamical pressure impact[J]. Journal of Mining & Safety Engineering, 2018, 35(6): 1135-1141.
[10] 杨达明,郭文兵,于秋鸽,等.浅埋近水平煤层采场覆岩压力拱结构特性及演化机制分析[J].采矿与安全工程学报,2019,36(2):323-330. YANG Daming, GUO Wenbing, YU Qiuge, et al. Structural characteristics and evolution mechanism of overlying strata pressure arch in shallow and flat seams[J]. Journal of Mining & Safety Engineering, 2019, 36(2): 323-330.
[11] 张杰,张建辰,刘清洲,等.浅埋综采工作面覆岩裂隙发育及漏风规律研究[J].煤炭工程,2021,53(3):118-123. ZHANG Jie, ZHANG Jianchen, LIU Qingzhou, et al. Crack development and air leakage law of overburden rock in shallow fully mechanized face[J]. Coal Engineering, 2021, 53(3): 118-123.
[12] 黎经雷,牛会永,鲁义,等.风速对近距离煤层采空区漏风及煤自燃影响研究[J].煤炭科学技术,2019,47(3):156-162. LI Jinglei, NIU Huiyong, LU Yi, et al. Study on effect of wind speed to air leakage and spontaneous combustion in goaf of contiguous seams[J]. Coal Science and Technology, 2019, 47(3): 156-162.
[13] 李宗翔,刘汉武,刘宇,等.工作面与采空区漏风交换风量测算方法[J].煤炭学报,2018,43(8):2256. LI Zongxiang, LIU Hanwu, LIU Yu, et al. Method for calculating air leakage exchange between working face and goaf[J]. Journal of China Coal Society, 2018, 43(8): 2256.
[14] 杨国枢,王建树.近距离煤层群二次采动覆岩结构演化与矿压规律[J].煤炭学报,2018,43(S2):353-358. YANG Guoshu, WANG Jianshu. Overburden structure evolution and pressure law of second mining in close-range coal seam group[J]. Journal of China Coal Society, 2018, 43(S2): 353-358.
[15] 张军,王建鹏.采动覆岩“三带”高度相似模拟及实证研究[J].采矿与安全工程学报,2014,31(2):249. ZHANG Jun, WANG Jianpeng. Similar simulation and practical research on the mining overburden roof strata “three-zones” height[J]. Journal of Mining & Safety Engineering, 2014, 31(2): 249.
[16] 张军,王建鹏,杨文光.综采工作面冒落高度模糊综合预测模型研究[J].中国矿业大学学报,2014,43(3):426-431. ZHANG Jun, WANG Jianpeng, YANG Wenguang. Research on the fuzzy comprehensive predicting model for caved zone height of fully mechanized working face[J]. Journal of China University of Mining & Technology, 2014, 43(3): 426-431.
[17] 杨文光,张军,隋丽丽.综采工作面上覆岩层垮落高度T-S模糊预测模型研究[J].矿业安全与环保,2015,42(3):38. YANG Wenguang, ZHANG Jun, SUI Lili. Research on fuzzy T-S prediction model for caving height of overlying strata in fully mechanized working face[J]. Mining Safety & Environmental Protection, 2015, 42(3): 38.
[18] 李树刚,丁洋,安朝峰,等.近距离煤层重复采动覆岩裂隙形态及其演化规律实验研究[J].采矿与安全工程学报,2016,33(5):904-910. LI Shugang, DING Yang, AN Chaofeng, et al. Experimental research on the shape and dynamic evolution of repeated mining-induced fractures in short-distance coal seams[J]. Journal of Mining & Safety Engineering, 2016, 33(5): 904-910.
[19] 黄万朋,高延法,王波,等.覆岩组合结构下导水裂隙带演化规律与发育高度分析[J].采矿与安全工程学报,2017,34(2):330-335. HUANG Wanpeng, GAO Yanfa, WANG Bo, et al. Evolution rule and development height of permeable fractured zone under combined-strata structure[J].Journal of Mining & Safety Engineering, 2017, 34(2):330-335.
[20] 杨学祥.均布荷载下一端固定的文克尔地基梁的基底压力特性及其工程意义[J].工程力学,2006(11):76-79. YANG Xuexiang. The feature of foundation pressure on winkler foundation-beam with one fixed end and its application[J]. Engineering Mechanics, 2006(11):76-79.
[21] 张云.西部矿区短壁块段式采煤覆岩导水裂隙发育机理及控制技术研究[D].徐州:中国矿业大学,2019. -
期刊类型引用(24)
1. 尚慧,柳思航,甘智慧,苏理想,刘阳. 浅埋煤层群开采覆岩垮落及导水裂隙带发育规律研究. 水文地质工程地质. 2025(02): 125-137 . 百度学术
2. 李瑞金,李谭,陈光波,李康. 煤柱-顶板结构能量演化特征及稳定性研究. 煤矿安全. 2024(01): 139-150 . 本站查看
3. 王振宇,岳高伟,蔺海晓,李敏敏. 单轴冲击荷载下煤体损伤及破坏特征分析. 煤矿安全. 2024(02): 10-18 . 本站查看
4. 张金金,杜航,张嘉晨,訾龙. 浅埋煤层综放开采导水裂隙发育特征及隔水层稳定性研究. 煤炭工程. 2024(01): 78-85 . 百度学术
5. 毛华晋. 近距离下层煤开采区段煤柱合理错距研究. 煤炭工程. 2024(05): 24-30 . 百度学术
6. 史学腾. 重复采动下煤层顶板裂隙岩体的变形规律研究. 能源与节能. 2024(06): 174-177 . 百度学术
7. 杜佳慧,李文璞,常悦,王泽,王涛. 卸荷砂岩渐进破坏及渗透特性的中间主应力效应研究. 煤矿安全. 2024(06): 19-29 . 本站查看
8. 刘润,王朋飞. 采空区下工作面末采期回撤通道围岩应力分布规律. 煤炭技术. 2024(08): 79-84 . 百度学术
9. 付文一. 浅埋煤层重复采动覆岩破坏规律研究. 煤. 2024(08): 101-104 . 百度学术
10. 梅福星,尚宇琦,孔德中,张鹏飞,张林,吴仕雄. 基于DIC技术近距离煤层采动裂隙-位移-应变演化规律相似模拟研究. 矿业科学学报. 2024(04): 519-528 . 百度学术
11. 喻军健,张庆海,纪新波,陈军涛,范铭今,李果. 相邻工作面开采扰动下覆岩破坏及地表沉降特征研究. 煤炭技术. 2024(09): 6-11 . 百度学术
12. 郭进. 缓倾斜近距离煤层群重复开采“两带”高度研究. 煤炭技术. 2024(10): 81-86 . 百度学术
13. 李国平,刘宝玉,于可伟,李盼盼,蔚波. 彬长矿区复杂地质条件下覆岩导水裂隙带发育特征研究. 能源与环保. 2024(09): 127-132 . 百度学术
14. 许亚优,郭佳策,宋小林. 井上下多层复合采空区漏风运移相似模拟实验研究. 煤矿安全. 2024(12): 143-152 . 本站查看
15. 赵磊. 晋邦德煤业综采面覆岩位移变化相似模拟研究. 煤. 2023(01): 10-13+79 . 百度学术
16. 李利峰. 近距离煤层开采覆岩运移规律诱发地表沉降分析. 中国矿业. 2023(05): 110-117 . 百度学术
17. 朱友恒. 近距离煤层开采导水裂隙带发育高度数值模拟研究. 能源与环保. 2023(05): 1-6 . 百度学术
18. 杨涛,闫医慧,张杰,林海飞,何义峰,张一铭,高守世. 浅埋煤层群上下层位土层与基岩层协同隔水稳定性研究. 煤炭科学技术. 2023(07): 234-242 . 百度学术
19. 刘国建,杨富强,高学丰,姜宁. 浅埋薄基岩采场覆岩破断特征及其导水裂隙带发育规律研究. 煤炭工程. 2023(08): 108-113 . 百度学术
20. 经来旺,方旭,肖起辉,张世翔,焦建军,经纬. 含摩擦作用叠梁应力势函数对煤层顶板的破坏研究. 煤矿安全. 2023(09): 112-118 . 本站查看
21. 张杰,何义峰. 浅埋煤层群裂隙演化规律及组合承载结构载荷研究. 煤炭科学技术. 2023(09): 65-76 . 百度学术
22. 王杰. 变倾角煤层内工作面开采诱冲机理及防治技术. 煤矿安全. 2023(11): 124-132 . 本站查看
23. 王红胜,张胜伟,李斌,李磊,郭卫彬,肖双双. 近距离煤层群综放开采覆岩导水裂隙发育规律. 西安科技大学学报. 2022(04): 629-636 . 百度学术
24. 窦成义,李建华,杜豪豪,李庆钊. 基于主应力-位移判别法的高位定向长钻孔布置层位分析及应用. 陕西煤炭. 2022(05): 1-5+29 . 百度学术
其他类型引用(14)
计量
- 文章访问数: 52
- HTML全文浏览量: 1
- PDF下载量: 35
- 被引次数: 38