深埋弱胶结软岩巷道变形破坏规律与控制对策
Deformation failure law and control countermeasures of deep buried weakly cemented soft rock roadway
-
摘要: 为研究深埋弱胶结软岩巷道的变形破坏规律并确定合理的控制对策,以余吾煤矿南翼总回风巷工程为例,通过改变应变软化模型参数来反映弱胶结软岩的泥化以及膨胀特征,对巷道掘进过程中围岩的应力、变形以及破坏规律展开数值分析,并在此基础上提出了“锚喷+注浆+反底拱”联合支护控制对策。研究结果表明:常规锚喷支护条件下,深埋弱胶结软岩巷道顶底板以及两帮围岩的径向位移将在巷道向前掘进24 m后达到734.2、490.3、549.6 mm,同时,它们的松动区深度将分别增至5.6、2.8、3.0 m,而塑性区深度则扩展至9.5、8.8、13.7 m;而采用“锚喷+注浆+反底拱”联合支护后,巷道围岩径向位移和塑性区深度将分别减小91%~94%和71%~74%,且达到稳定的时间也大大缩短。Abstract: In order to study the deformation-failure law of deep buried weakly cemented soft rock roadway and determine reasonable control countermeasures, taking the south main return laneway of Yuwu Coal Mine as an example, the strain softening model parameters were adjusted to reflect the argillization and volume expansion characteristics of weakly cemented soft rock. The stress, deformation and failure evolution of surrounding rock during roadway excavation were numerically analyzed. On this basis, the combined support control countermeasure of “bolt-shotcrete + grouting + inverted arch” was obtained. The results show that the radial displacement of roof, floor and two sides of surrounding rock in deep buried weakly cemented soft rock roadway will reach 734.2 mm, 490.3 mm and 549.6 mm after tunneling 24 m forward. At the same time, the depth of loose zone will increase to 5.6 m, 2.8 m and 3.0 m respectively, while the depth of plastic zone will expand to 9.5 m, 8.8 m and 13.7 m respectively. After adopting the combined support of “bolt-shotcrete + grouting + inverted arch”, the radial displacement and plastic zone depth of roadway will be reduced by 91%-94% and 71%-74%, respectively, and the time to reach stability is greatly shortened.
-
-
[1] MENG Lusha, FAN Deyuan, LIU Xuesheng. Fissure evolution of weak-cemented Jurassic overburden induced by multiple-seam mining: a case study in Western China[J]. Energy Sources Part A-Recovery Utilization and Environmental Effects, 2019: 43(16):2041-2061. [2] 张向东,李军,刘家顺,等.强膨胀软岩巷道变形特性及控制对策研究[J].中国矿业大学学报,2017,46(3): 493-500. ZHANG Xiangdong, LI Jun, LIU Jiashun, et al. Research on deformation characteristics of strong expansive soft rock roadway and its control strategy[J]. Journal of China University of Mining & Technology, 2017, 46(3):494-500.
[3] 朱光亚,李思超,柏建彪,等.弱胶结富水巷道合理支护技术研究[J].煤炭科学技术,2016,44(3):7-11. ZHU Guangya, LI Sichao, BAI Jianbiao, et al. Study on rational support technology of mine weakly consolidated watery roadway[J]. Coal Science and Technology, 2016, 44(3): 7-11.
[4] 张嘉凡,程树范,王焕,等.西部弱胶结软岩细观结构及水理特性试验[J].煤田地质与勘探,2020,48(3):116-121. ZHANG Jiafan, CHENG Shufan, WANG Huan, et al. Experiment of microstructure and hydrologic characteristics of weakly cemented soft rocks in western china[J]. Coal Geology & Exploration, 2020, 48(3): 116-121.
[5] 左清军,陈可,谈云志,等.基于时间效应的富水泥质板岩隧道围岩膨胀本构模型研究[J].岩土力学,2016,37(5):1357-1364. ZUO Qingjun, CHEN Ke, TAN Yunzhi, et al. A time-dependent constitutive model of the water-rich argillaceous slate surrounding a tunnel[J]. Rock and Soil Mechanics, 2016, 37(5): 1357-1364.
[6] 经来旺,陈思羽.富水软岩巷道复合支护技术与监测分析[J].煤矿安全,2018,49(8):231. JING Laiwang, CHEN Siyu. Composite support technology and monitoring analysis of water-rich soft rock roadway[J]. Safety in Coal Mines, 2018, 49(8): 231.
[7] 赵增辉,王谓明,严纪兴.弱胶结软岩地层煤巷稳定性的参数影响度及其破坏特征[J].现代隧道技术,2014, 51(3):144-151. ZHAO Zenghui, WANG Weiming, YAN Jixing. The influence of parameters on the stability of a coal roadway in weakly cemented soft rock and stability failure features[J]. Modern Tunneling Technology, 2014, 51(3): 144-151.
[8] 李清,侯健,韩通,等.杨家村矿弱胶结软岩煤巷变形机制与围岩控制技术研究[J].煤炭工程,2016,48(7):40-43. LI Qing, HOU Jian, HAN Tong, et al. Research on deformation mechanism and support technology of coal roadway with weakly cemented rock strata in Yangjiacun mine[J]. Coal Engineering, 2016, 48(7): 40-43.
[9] 付宝杰,方恩才,涂敏,等.深埋弱黏结顶板采场矿压显现特征及载荷传递机理研究[J].采矿与安全工程学报, 2019, 36(1):24-29. FU Baojie, FANG Encai, TU Min, et al. Study on load-transfer mechanism and strata behavior characteristics in deep-buried weak-caking roof[J]. Journal of Mining & Safety Engineering, 2019, 36(1): 24-29.
[10] 梁冰,曹强,王俊光,等.弱崩解性软岩干-湿循环条件下崩解特性试验研究[J].中国安全科学学报,2017,27(8): 91-96. LIANG Bing, CAO Qiang, WANG Junguang, et al. Experimental study on slaking characteristics of feeble disintegration soft rock in drying-wetting cycle[J]. China Safety Science Journal, 2017: 27(8): 91-96.
[11] 王进学,杨胜利,陈忠辉.膨胀软岩巷道底鼓机理与耦合支护技术研究[J].金属矿山,2008(12):16-20. WANG Jinxue, YANG Shengli, CHEN Zhonghui. Study on the floor heave mechanism of roadway in swelling soft rock and its coupling support technology[J]. Metal Mine, 2008(12): 16-20.
[12] 朱先龙,杨张杰,潘忠德,等.弱胶结富水顶板采动巷道全锚索支护技术[J].煤炭技术,2020,39(3):26. ZHU Xianlong, YANG Zhangjie, PAN Zhongde, et al. Full anchored cable support technology for dynamic pressure roadway with weakly cemented water-rich roof[J]. Coal Technology, 2020, 39(3): 26.
[13] 孙振伟,陈维龙.弱胶结软岩巷道底鼓变形机理及控制技术研究[J].煤炭技术,2019,38(3):31-34. SUN Zhenwei, CHEN Weilong. Study on floor heave deformation mechanism and control technique in weakly cemented soft rock road way[J]. Coal Technology, 2019, 38(3): 31-34.
[14] 谭云亮,于凤海,马成甫,等.弱胶结软岩煤巷锚杆索-围岩变形协同控制方法研究[J].煤炭科学技术,2021,49(1):198-207. TAN Yunliang, YU Fenghai, MA Chengfu, et al. Research on collaboration control method of bolt/cable-surrounding rock deformation in coal roadway with weakly cemented soft rock[J]. Coal Science and Technology, 2021, 49(1): 198-207.
[15] 张春会,郑晓明.岩石应变软化及渗透率演化模型和试验验证[J].岩土工程学报,2016,38(6):1125. ZHANG Chunhui, ZHENG Xiaoming. Strain softening and permeability evolution model of loaded rock and experimental verification[J]. Chinese Journal of Geo-technical Engineering, 2016, 38(6): 1125.
[16] 孙闯,张树光,贾宝新,等.花岗岩峰后力学特性试验与模型研究[J].岩土工程学报,2015,37(5):847. SUN Chuang, ZHANG Shuguang, JIA Baoxin, et al. Physical and numerical model tests on post-peak mechanical properties of granite[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 847.
[17] 经纬,薛维培,姚直书.巷道围岩塑性软化区岩石内摩擦角与黏聚力变化规律[J].煤炭学报,2018,43(8):2203-2210. JING Wei, XUE Weipei, YAO Zhishu. Variation of the internal friction angle and cohesion of the plastic softening zone rock in roadway surrounding rock[J]. Journal of China Coal Society, 2018, 43(8): 2203-2210.
[18] 苏承东,付义胜.红砂岩三轴压缩变形与强度特征的试验研究[J].岩石力学与工程学报,2014,33(S1):3164-3169. SU Chengdong, FU Yisheng. Experimental study of triaxial compression deformation and strength characteristics of red sandstone[J].Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 3164-3169.
[19] 王磊,李祖勇.西部弱胶结泥岩的三轴压缩试验分析[J].长江科学院院报,2016,33(8):86-90. WANG Lei, LI Zuyong. Triaxial compression test analysis of weakly cemented mudstone in West China[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(8): 86-90.
[20] 刘刚,李明.煤岩单轴与三轴压缩试验研究[J].煤矿安全,2013,44(7):4-6. LIU Gang, LI Ming. Experimental study of coal rock uniaxial and triaxial compression[J]. Safety in Coal Mines, 2013, 44(7): 4-6.
[21] 赵维生,梁维,许猛堂,等.围岩吸水对泥质弱胶结岩石巷道稳定性的影响[J].矿业研究与开发,2020,40(7):32-36. ZHAO Weisheng, LIANG Wei, XU Mengtang, et al. The influence of water absorption of surrounding rock on the roadway stability of weakly consolidated argillaceous rock[J]. Mining Research and Development, 2020, 40(7): 32-36.
[22] 孟庆彬,王杰,韩立军,等.极弱胶结岩石物理力学特性及本构模型研究[J].岩土力学,2020,41(S1):19. MENG Qingbin, WANG Jie, HAN Lijun, et al. Physical and mechanical properties and constitutive model of very weakly cemented rock[J]. Rock and Soil Mechanics, 2020, 41(S1): 19.
计量
- 文章访问数: 40
- HTML全文浏览量: 0
- PDF下载量: 6