• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

基于CT扫描的煤样图像处理及裂隙形态表征

李小二, 王鹏, 靳翔飞, 陈新明, 张将令

李小二, 王鹏, 靳翔飞, 陈新明, 张将令. 基于CT扫描的煤样图像处理及裂隙形态表征[J]. 煤矿安全, 2022, 53(2): 125-129.
引用本文: 李小二, 王鹏, 靳翔飞, 陈新明, 张将令. 基于CT扫描的煤样图像处理及裂隙形态表征[J]. 煤矿安全, 2022, 53(2): 125-129.
Coal sample image processing and fracture morphological representation based on CT scanning[J]. Safety in Coal Mines, 2022, 53(2): 125-129.
Citation: Coal sample image processing and fracture morphological representation based on CT scanning[J]. Safety in Coal Mines, 2022, 53(2): 125-129.

基于CT扫描的煤样图像处理及裂隙形态表征

Coal sample image processing and fracture morphological representation based on CT scanning

  • 摘要: 利用工业CT扫描设备对赵固一矿优质无烟煤进行样品取心和微观扫描分析;运用图像处理技术对原始图像进行降噪、增强对比度和二值化处理,借助阈值调节使图像信息得到准确表达;通过Avizo软件对CT图像进行重建,得到三维的裂隙结构模型。结果表明:基于工业显微CT扫描重建的三维数字煤心,能准确地反映真实煤心的内部裂隙结构;图像精细处理能够对煤样中错综复杂的裂隙网络进行精确表征,达到定量描述的要求。
    Abstract: Using industrial CT scanning equipment, sample coring and microscopic scanning analysis of high quality anthracite in Zhaogu No.1 Mine were carried out. The original image is denoised, enhanced, and binarized by image processing technology. The image information is accurately expressed by threshold adjustment. Finally, the CT image was reconstructed by Avizo software to obtain a three-dimensional fracture structure model. The results show that the three-dimensional digital coal core reconstructed by industrial microscopic CT scanning can accurately reflect the internal fracture structure of the real coal core. Image fine processing can accurately characterize the complex fracture network in coal samples and meet the requirements of quantitative description.
  • [1] 高兴军,齐亚东,宋新民,等.数字岩心分析与真实岩心实验平行对比研究[J].特种油气藏,2015,22 (6):93-96.

    GAO Xingjun, QI Yadong, SONG Xinmin, et al. Parallel comparison of digital core analysis and real core test[J]. Special Oil & Gas Reservoirs, 2015, 22(6): 93-96.

    [2] 岳立新,孙可明.超临界CO2增透煤微观图像重构及三维数值模拟[J].中国安全生产科学技术,2017,13(1):58-64.

    YUE Lixin, SUN Keming. Microscopic image reconstruction and three-dimensional numerical simulation of supercritical CO2 permeable coal[J]. Journal of Safety Science and Technology, 2017, 13(1): 58-64.

    [3] 蔡改贫,汪龙,罗小燕,等.基于分块处理的矿石图像多阈值二值化算法[J].矿业研究与开发,2020,40(12):153-157.

    CAI Gaipin, WANG Long, LUO Xiaoyan, et al. Multi-threshold binary algorithm for ore image based on block processing[J]. Mining Research and Development, 2020, 40(12): 153-157.

    [4] 李小春,曾志姣,石露,等.岩石微焦 CT 扫描的三轴仪及其初步应用[J].岩石力学与工程学报,2015,34(6):1128-1134.

    LI Xiaochun, ZENG Zhijiao, SHI Lu, et al. Triaxial apparatus for micro-focus CT scan of rock and its preliminary application[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6): 1128-1134.

    [5] 焦华喆,王树飞,吴爱祥,等.膏体浓密床层孔隙结构剪切演化与连通机理[J].中南大学学报(自然科学版),2019,50(5):1173.

    JIAO Huazhe, WANG Shufei, WU Aixiang, et al. Shear evolution and connected mechanism of pore structure in thickening bed of paste[J]. Journal of Central South University(Science and Technology), 2019, 50(5): 1173.

    [6] 王思远,李俊乾,卢双舫,等.渝东南地区海相页岩有机质孔隙发育特征[J].地球科学与环境学报,2019, 41(6):721-733.

    WANG Siyuan, LI Jungan, LU Shuangfang, et al. Development characteristics of organic matter pores of marine shale in the southeastern Chongqing, China[J]. Journal of Earch Sciences and Environment, 2019, 41(6): 721-733.

    [7] 贾小宝,牛海萍,刘鸿福,等.基于微焦点显微CT技术的不同煤体结构煤的孔裂隙定量表征[J].煤矿安全,2018,49(11):24-28.

    JIA Xiaobao, NIU Haiping, LIU Hongfu, et al. Quantitative characterization of pore fissures for different coal structures based on μCT[J]. Safety in Coal Mines, 2018, 49(11): 24-28.

    [8] 冯泽宇,董宪姝,樊玉萍,等.基于显微CT技术的滤饼微观孔隙结构研究[J].矿业研究与开发,2021,41(3):131-135.

    FENG Zeyu, DONG Xianshu, FAN Yuping, et al. Study on the micro pore structure of filter cake based on micro-CT technology[J]. Mining Research and Development, 2021, 41(3): 131-135.

    [9] 毛伟泽,吕庆,郑俊,等.基于CT图像的花岗岩矿物组分与细观结构分析[J/OL].工程地质学报,2021: 1-6. https://doi.org/10.13544/j.cnki.jeg.2020-121.

    MAO Weize, LV Qing, ZHENG Jun, et al. Analysis of mineral composition and meso-structure of granite using CT images[J/OL]. Journal of Engineering Geology, 2021: 1-6. https://doi.org/10.13544/j.cnki.jeg.2020-121.

    [10] 宋党育,何凯凯,吉小峰,等.基于CT扫描的煤中孔裂隙精细表征[J].天然气工业,2018,38(3):41.

    SONG Dangyu, HE Kaikai, JI Xiaofeng, et al. Fine characterization of pores and fractures in coal based on a CT scan[J]. Natural Gas Industry, 2018, 38(3): 41-49.

    [11] 李长圣,张丹,王宏宪,等.基于CT扫描的土石混合体三维数值网格的建立[J].岩土力学,2014,35(9):2731-2736.

    LI Changsheng, ZHANG Dan, WANG Hongxian, et al. 3D mesh generation for soil-rock mixture based on CT scanning[J]. Rock and Soil Mechanics, 2014, 35(9): 2731-2736.

    [12] 王登科,魏强,魏建平,等.煤的裂隙结构分形特征与分形渗流模型研究[J].中国矿业大学学报,2020,49(1):103-109.

    WANG Dengke, WEI Qiang, WEI Jianping, et al. Fractal characteristics of fracture structure and fractal seepage model of coal[J]. Journal of China University of Mining & Technology, 2020, 49(1): 103-109.

    [13] 苗杰.低渗煤岩大孔隙结构三维重构及渗流模拟[D].焦作:河南理工大学,2017.
    [14] 卞继伟,王新民,肖崇春.全尾砂动态絮凝沉降试验研究[J].中南大学学报(自然科学版),2017,48(12):3278-3283.

    BIAN Jiwei, WANG Xinmin, XIAO Chongchun. Experimental study on dynamic flocculating sedimentation of unclassified tailings[J]. Journal of Central South University(Science and Technology), 2017, 48(12): 3278.

    [15] 李海琪,冯子军.高温水蒸汽作用后长焰煤细观结构的显微CT研究[J].煤矿安全,2021,52(6):47-51.

    LI Haiqi, FENG Zijun. Micro CT study of microstructure of long flame coal after high temperature steam[J]. Safety in Coal Mines, 2021, 52(6): 47-51.

    [16] 阳树洪.灰度图像阈值分割的自适应和快速算法研究[D].重庆:重庆大学,2014.
    [17] 刘维福,丁序海,周光.基于CT成像的煤岩孔裂隙结构重建及渗流模拟研究[J].煤矿安全,2021,52(2):23-27.

    LIU Weifu, DING Xuhai, ZHOU Guang. Reconstruction and seepage simulation of coal and rock pore fracture structure based on CT imaging[J]. Safety in Coal Mines, 2021, 52(2): 23-27.

    [18] 钟江城,王子辉,王路军,等.基于CT三维重构的深部煤体损伤演化规律[J].煤炭学报,2019,44(5):1482-1494.

    ZHONG Jiangcheng, WANG Zihui, WANG Lujun, et al. Characteristics of damage evolution of deep coal based on CT three-dimensional reconstruction[J]. Journal of China Coal Society, 2019, 44(5): 1482.

    [19] 王刚,杨鑫祥,张孝强,等.基于CT三维重建与逆向工程技术的煤体数字模型的建立[J].岩土力学,2015,36(11):3322-3328.

    WANG Gang, YANG Xinxiang, ZHANG Xiaoqiang, et al. Establishment of digital coal model using computed tomography based on reverse engineering technology and three-dimensional reconstruction[J]. Rock and Soil Mechanics, 2015, 36(11): 3322 -3328.

  • 期刊类型引用(5)

    1. 李帅,王志飞,李樊,杜呈欣,王浩东,杨博璇. 基于机器视觉的高速铁路站车联动控制技术. 科学技术与工程. 2025(02): 773-779 . 百度学术
    2. 黄东东,何芳芳,桂益龙. 基于边缘计算的全封闭圆形煤场储量自动测绘方法. 自动化技术与应用. 2025(02): 127-131 . 百度学术
    3. 李涛,邹英杰,范洪冬,吝涛. 基于DBD-Net的InSAR矿区开采沉陷盆地检测方法. 煤矿安全. 2024(04): 177-186 . 本站查看
    4. 徐芳. 基于最小生成树的数字图像层次化分割方法研究. 重庆科技学院学报(自然科学版). 2023(01): 74-78 . 百度学术
    5. 季亮. 基于改进SOLOv2的煤矿图像实例分割方法. 工矿自动化. 2023(11): 115-120 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  98
  • HTML全文浏览量:  9
  • PDF下载量:  29
  • 被引次数: 9
出版历程
  • 发布日期:  2022-02-19

目录

    /

    返回文章
    返回