碱渣改良矸石胶结充填材料力学性能试验研究
Experimental study on mechanical properties of gangue cemented filling material improved by alkali residue
-
摘要: 基于固废碱渣排放量大、处理成本高和污染环境的背景,探讨利用碱渣改良矸石胶结充填材料力学性能的可行性;通过测试碱渣基本物理力学特性,研究碱渣掺量和养护龄期对胶结充填材料力学性能的影响规律及其强度机理。结果表明:随着碱渣掺量在0%~12%范围内逐渐增大,充填体早期强度、中期强度和后期强度均呈现出先增强后降低规律;碱渣胶结充填材料的最佳配合比为碱渣∶粉煤灰∶石灰∶水泥∶矸石∶旧集料=6%∶34%∶10%∶2.5%∶24%∶23.5%,材料早期强度和后期强度增幅高达449%和187%;碱渣胶结充填材料料浆体系中C-S-H胶凝与N-A-S-H胶凝共存,N-A-S-H胶结性能更强,减少了孔隙的连通性,适量的碱渣掺量能够有效提高材料强度;碱渣制备胶结充填材料能够实现节能减排,其技术、经济与社会效益显著,具备良好的工程应用价值。Abstract: Based on the background of large amount of solid waste alkali slag, high treatment cost and environmental pollution, the feasibility of using alkali slag to improve mechanical properties of gangue cemented backfill material was discussed. In this paper, the basic physical and mechanical properties of alkali slag are tested, and the influence law and strength mechanism of alkali slag content and curing age on mechanical properties of cemented filling materials are studied. The results show that: with the increase of alkali slag content in the range of 0%-12%, the strength of the backfill in the early stage, the middle stage and the later stage show the law of first strengthening and then decreasing; the optimum mix ratio of alkali slag cemented backfill material is alkali slag∶ fly ash∶ lime∶ cement∶ gangue∶ used aggregate=6%∶34%∶10%∶2.5%∶24%∶23.5%, and the early strength and late strength of the material increase up to 449% and 187%; C-S-H cementation coexists with N-A-S-H cementation in the slurry system of alkali slag cemented backfill material, and N-A-S-H cementation has stronger cementation performance, which reduces the connectivity of pores. An appropriate amount of alkali slag can effectively improve the strength of the material. The cemented filling material prepared by alkali slag can realize energy saving and emission reduction, and its technical, economic and social benefits are remarkable, and it has good engineering application value.
-
-
[1] 张吉雄,巨峰,李猛,等.煤矿矸石井下分选协同原位充填开采方法[J].煤炭学报,2020,45(1):131-140. ZHANG Jixiong, JU Feng, LI Meng, et al. Method of coal gangue separation and coordinated in-situ backfill mining[J]. Journal of China Coal Society, 2020(1): 131-140.
[2] 贺佑国,叶旭东,王震.关于煤炭工业“十三五”规划的思考[J].煤炭经济研究,2015,35(1):6-8. HE Youguo, YE Xudong, WANG Zhen. Consideration on the 13th five year plan of coal industry[J]. Coal Economic Research, 2015, 35(1): 6-8.
[3] LI Meng, ZHANG Jixiong, ZHOU Nan, et al. Effect of particle size on the energy evolution of crushed waste rock in coal mine[J]. Rock Mechanics and Rock Engineering, 2017, 50(5): 1347-1354. [4] 冉洪宇,郭育霞,冯国瑞,等.分级加载下矸石胶结充填材料蠕变特性研究[J].矿业研究与开发,2020,40(2):42-47. RAN Hongyu, GUO Yuxia, FENG Guorui, et al. Creep properties of coal gangue cemented backfill material under step loading[J]. Mining Research and Development, 2020, 40(2): 42-47.
[5] 崔增娣,孙恒虎.煤矸石凝石似膏体充填材料的制备及其性能[J].煤炭学报,2010,35(6):896-899. CUI Zengdi, SUN Henghu. The preparation and properties of coal gangue based sialite paste-like backfill material[J]. Journal of China Coal Society, 2010, 35(6): 896-899.
[6] Shenghua Yin, Yajian Shao, Aixiang Wu, et al. A systematic review of paste technology in metal mines for cleaner production in China[J]. Journal of Cleaner Production, 2020, 247 [7] 李端乐,王栋民,袁宁.循环流化床粉煤灰对矸石胶结充填材料性能的影响[J].硅酸盐通报,2020,39(8):2401-2407. LI Duanle, WANG Dongmin, YUAN Ning. Influence of circulatinag fluidized bed fly ash on properties of ganque cemented filling materials[J]. Journal of Synthetic Crystals, 2020, 39(8): 2401-2407.
[8] 宋茜茜,刘凯,付星辉,等.岩盐资源充填式水溶开采新技术[J].中国井矿盐,2019,50(4):19-21. SONG Qianqian, LIU Kai, FU Xinghui, et al. New technology of rock salt mining by filling-water solution[J]. China Well and Rock Salt, 2019, 50(4): 19-21.
[9] 孙树林,郑青海,唐俊,等.碱渣改良膨胀土室内试验研究[J].岩土力学, 2012,33(6):1608-1612. SUN Shulin, ZHENG Qinghai, TANG Jun, et al. Experimental research on expansive soil improved by soda residue[J]. Rock and Soil Mechanics, 2012(6): 608.
[10] 杨医博,普永强,严卫军,等.碱渣的微观结构及氯离子溶出特性[J].华南理工大学学报(自然科学版),2017,45(5):82-89. YANG Yibo, PU Yongqiang, YAN Weijun, et al. Microstructure and chloridelon dissolution characteristics of soda residue[J]. Journal of South China University of Technology(Natural Science Edition), 2017, 45(5): 82-89.
[11] 马加骁,张鹏,白晓宇,等.碱渣土地基承载性能试验[J].科学技术与工程,2019,19(30):303-309. MA Jiaxiang, ZHANG Peng, BAI Xiaoyu, et al. Experimental on bearing capacity of alkali slag foundation[J]. Science Technology and Engineering, 2019, 12(30): 303-309.
[12] 田学伟,李显忠.唐山碱渣土的工程利用研究[J].建筑科学,2009,25(7):77-79. TIAN Xuewei, LI Xianzhong. Research on engineering utilization of soda residue soil in Tangshan[J]. Building Science, 2009, 25(7): 77-79.
[13] 檀奥龙,魏连雨,王清洲.碱渣改良风化泥岩的物理力学试验研究[J].硅酸盐通报,2018,37(8):2610-2615. TAN Aolong, WEI Lianyu, WANG Qingzhou. Physical and mechanical experimental study on improving weathered mudstone with soda residue[J]. Journal of Synthetic Crystals, 2018, 37(8): 2610-2615.
[14] 黄庆享,李亮.充填材料及其强度研究[J].煤矿开采,2011,16(3):38-42. HUANG Qingxiang, LI Liang. Research on stowing material and its strength[J]. Coal Mine Technology, 2011, 16(3): 38-42.
[15] 刘春原,赵献辉,朱楠,等.粉煤灰基地质聚合物力学性能及碱渣改性机理[J].硅酸盐通报,2017,36(2):679-685. LIU Chunyuan, ZHAO Xianhui, ZHU Nan, et al. Mechanical properties of fly ash-based geopolymers and modification mechanism of soda residue[J]. Journal of Synthetic Crystals, 2017, 4(2): 679-685.
-
期刊类型引用(5)
1. 陈志松,徐佑林,江泽标,肖兵,吴少康,张际涛. 基于低标硫铝酸盐水泥熟料的高水材料物理力学性能及应用. 采矿与岩层控制工程学报. 2024(02): 146-156 . 百度学术
2. 孙海宽,甘德清,薛振林,刘志义,张雅洁. 碱渣改性充填体早期力学特性及能量演化特征. 材料导报. 2024(09): 140-146 . 百度学术
3. 柴涛,刘鹏. 一种新型地聚合物胶料制备与路基溶洞充填应用技术. 粘接. 2023(04): 100-104 . 百度学术
4. 王元战,龚晓龙,王轩,张春生,谢涛. 碱渣土的触变性与扰动后强度演化规律研究. 天津大学学报(自然科学与工程技术版). 2023(06): 633-640 . 百度学术
5. 赵兵朝,陈攀,翟迪,张金贵,韦启蒙. 颗粒级配及时效性对充填料浆流变特性的影响. 煤矿安全. 2023(10): 117-127 . 本站查看
其他类型引用(2)
计量
- 文章访问数: 67
- HTML全文浏览量: 0
- PDF下载量: 25
- 被引次数: 7