Abstract:
The selection of signal frequency in acoustic temperature measurement technology is the key to improve the accuracy of temperature measurement. In order to explore the optimal propagation frequency of low-frequency sound waves in loose coal, lignite, coking coal, and anthracite are used as the research objects. The acoustic loss of three coal samples under six particle sizes(0.9 mm to <3 mm, 3 mm to <5 mm, 5 mm to <7 mm, 7 mm to 10 mm, 9 mm to 10 mm and larger than 10 mm) by using the acoustic loss test system is tested. The experimental results show that the sound transmission loss of three coal samples presents a wave-like rising shape with the increase of the sound wave frequency. Compared with coal samples of other particle sizes, the sound transmission loss of coal samples in the range of 0.9 mm to <3 mm is the largest. As the particle size of coal samples increases, the sound transmission loss of coal samples continues to increase, and the sound wave frequency corresponding to the lowest point of sound transmission loss also increases. The degree of coal sample deterioration has no obvious regularity in the influence of sound transmission loss. The sample size is the main factor that affects the change of the sound transmission loss of the coal sample, and the sound waves mainly propagate along the gaps between the particle sizes of the loose coal. By comparing and analyzing the maximum and minimum values of sound transmission loss, there is a maximum value between 250 Hz to 600 Hz and 900 Hz to 1 600 Hz about the sound transmission loss of coal samples of different particle sizes, and the maximum sound transmission loss range is between 4.66 dB and 7.64 dB. By testing the sound transmission loss in the low-frequency sound waves of the mixture of three coal samples, it is determined that the optimal sound transmission frequency range in the loose coal is 600 Hz to 900 Hz.