• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

风量对独头掘进巷道中部顶板火灾影响研究

张军亮, 范鹏宏, 秦毅, 张学亮

张军亮, 范鹏宏, 秦毅, 张学亮. 风量对独头掘进巷道中部顶板火灾影响研究[J]. 煤矿安全, 2021, 52(12): 42-48.
引用本文: 张军亮, 范鹏宏, 秦毅, 张学亮. 风量对独头掘进巷道中部顶板火灾影响研究[J]. 煤矿安全, 2021, 52(12): 42-48.
ZHANG Junliang, FAN Penghong, QIN Yi, ZHANG Xueliang. Study on the influence of air volume on roof fire in the middle of single heading roadway[J]. Safety in Coal Mines, 2021, 52(12): 42-48.
Citation: ZHANG Junliang, FAN Penghong, QIN Yi, ZHANG Xueliang. Study on the influence of air volume on roof fire in the middle of single heading roadway[J]. Safety in Coal Mines, 2021, 52(12): 42-48.

风量对独头掘进巷道中部顶板火灾影响研究

Study on the influence of air volume on roof fire in the middle of single heading roadway

  • 摘要: 为研究独头巷道中部顶板火灾初期时局部通风机风量调节对人员避灾的影响,用PyroSim软件对450、675、900、1 125、1 350、1 575、1 800 m3/min 7种风量工况下巷道内烟流、温度、CO体积分数和能见度的分布情况进行模拟分析。研究得出:顶板火灾烟流直接沿顶板向两端射流,无上升羽流现象,当风量低于临界风速时,烟流逆退距离和烟流厚度随风量增加逐渐减小;顶板火灾稳定后,当存在烟流逆退时,沿纵向方向,CO体积分数、能见度峰值在烟流前锋后一定区域而温度峰值在火源附近,火源上风向巷道存在高温区和环境温度区,而下风向巷道各参数整体较为稳定;在火源下方,温度随高度增加总体呈升高趋势而能见度呈减低趋势;随风量增加,巷道内2 m高处温度峰值减小、最低能见度增加而CO体积分数峰值先增加后降低,且三者峰值位置均向出口方向移动;从人员逃生角度看,通风量越大越有利于逃生,1 350 m3/min时即可满足逃生条件。
    Abstract: In order to study the influence of local fan air volume on personnel disaster avoidance in the early stage of roof fire in the middle of single heading roadway, PyroSim software was used to analyze the distribution of smoke flow, temperature, CO concentration and visibility in the roadway under seven working conditions of 450 m3/min, 675 m3/min, 900 m3/min, 1 125 m3/min, 1 350 m3/min, 1 575 m3/min and 1 800 m3/min. The results show that the roof fire smoke flows directly to both ends along the roof, with no rising plume phenomenon, when the air volume is lower than the critical wind speed, the backflow length and smoke flow thickness gradually decrease with the increase of ventilation air volume. When the roof fire is stable and there is smoke backflow, along the longitudinal direction, the peak values of CO concentration and visibility are in a certain area behind the smoke front, while the peak value of temperature is below the fire source, and there is a high temperature zone and environmental temperature zone in the upwind direction of the fire source, while the smoke density, temperature, CO concentration and visibility in the exit direction are relatively stable; under the fire source, the temperature increases with the increase of height, while the visibility decreases; with the increase of wind volume, the peak values of temperature at 2 m gradually decrease, the minimum visibility in the roadway gradually increase, while the CO concentration first increases and then decreases, and the peak positions of the three parameters move towards the outlet. From the perspective of personnel escape, it is concluded that the greater theventilation is, the more conducive to escape, and 1 350 m3/min can meet the escape conditions.
  • [1] 陈立,张英华,黄志安,等.掘进巷道火灾惰化置换快速灭火技术研究[J].煤炭技术,2017,36(2):145-147.

    CHEN Li, ZHANG Yinghua, HUANG Zhian, et al. Research on rapid fire-fighting technology of inerting and replacing on drivage roadway fire[J]. Coal Technology, 2017, 36(2): 145-147.

    [2] 李丽,陈志平,王贝贝,等.独头煤巷火灾成因分析及应急处置技术[J].煤矿安全,2020,51(11):78-82.

    LI Li, CHEN Zhiping, WANG Beibei, et al. Fire cause analysis and emergency disposal technology inblind coal roadway[J]. Safety in Coal Mines, 2020, 51(11): 78-82.

    [3] Kunhua Xiao, Yuyang Ji. The effect of longitudinal ventilation system on smoke movement and people’s evacuation in tunnel fire[J]. IOP Conference Series: Earth and Environmental Science, 2021, 687(1): 012142.
    [4] 索在斌,吴世跃,牛煜,等.坡度对上行通风火灾影响的数值模拟[J].煤矿安全,2019,50(1):192.

    SUO Zaibin, WU Shiyue, NIU Yu, et al, Numerical simulation of the influence of slope on upward ventilation fire[J]. Safety in Coal Mines, 2019, 50(1): 192.

    [5] 沈云鸽,王德明.基于FDS的矿井巷道火灾烟气致灾的数值模拟[J].煤矿安全,2020,51(2):183-187.

    SHEN Yunge, WANG Deming. Numerical sim ulation of smoke disaster caused by mine roadway fire based on FDS[J]. Safety in Coal Mines, 2020, 51(2): 183-187.

    [6] 徐俊,陆伟,王正辉.细水雾抑制煤矿巷道火灾的试验和模拟[J].煤炭科学技术,2008,36(12):37-39.

    XU Jun, LU Wei, WANG Zhenghui. Experiment and simulation of fine water spraying to control fire disaster in mine gateway[J]. Coal Science and Technology, 2008, 36(12): 37-39.

    [7] 李小菊,朱杰,代君雨,等.不同截面形状矿井巷道火灾数值模拟研究[J].矿业安全与环保,2015,42(4):4-8.

    LI Xiaoju, ZHU Jie, DAI Junyu, et al. Numerical simulation study on fire in mine roadway with different cross-sectional shape[J]. Mining Safety & Environmental Protection, 2015, 42(4): 4-8.

    [8] 田水承,窦培谦,张成镇.基于Pyrosim的风速对矿井火灾蔓延规律影响研究[J].金属矿山,2020(2):199.

    TIAN Shuicheng, DOU Peiqian, ZHANG Chengzhen. Impact of different wind speeds on the law of mine fire spread based on Pyrosim[J]. Metal Mine, 2020(2): 199.

    [9] 贾静,郭立稳,朱令起,等.矿井巷道火灾烟流逆退数值模拟及临界风速研究[J].中国安全生产科学技术,2020,16(4):94-100.

    JIA Jing, GUO Liwen, ZHU Lingqi, et al. Study on numerical simulation of smoke backflow and critical wind speed in mine roadway fire[J]. Journal of Safety Science and Technology, 2020, 16(4): 94-100.

    [10] 张娇,王筱冬.基于PyroSim的矿井电气火灾仿真模拟[J].煤矿机械,2018,39(3):130-132.

    ZHANG Jiao, WANG Xiaodong. Simulation of mine electric fire based on PyroSim[J]. Coal Mine Machinery, 2018, 39(3): 130-132.

    [11] 席健,吴宗之,梅国栋.基于ABM的矿井火灾应急疏散数值模拟[J].煤炭学报,2017,42(12):3189-3195.

    XI Jian, WU Zongzhi, MEI Guodong. Numerical simulation of emergency evacuation during mine fire based on ABM[J]. Journal of China Coal Society, 2017, 42(12): 3189-3195.

    [12] E Wu, Rui Huang, Lin Wu, et al. Numerical study on the influence of altitude on roof temperature in mine fires[J]. IEEE Access, 2020, 8: 102855-102866.
    [13] Wang H, Du Y, Wang D, et al. Recent progress in polymer-containing soft matters for safe mining of coal[J]. Polymers, 2019, 11(10): 1706.
    [14] 李冰晶.煤矿用高分子材料事故分析[J].煤矿机电,2020,41(3):62-65.

    LI Bingjing. Analysis on accidents of polymer materials used in coal mine[J]. Colliery Mechanical & Electrical Technology, 2020, 41(3): 62-65.

    [15] 崔心源,吴兵,金莎.基于PyroSim的压入式通风巷道火灾模拟[J].消防科学与技术,2020,39(7):923.

    CUI Xinyuan, WU Bing, JIN Sha. Numerical simulation of fire in pressed ventilation tunnel based on PyroSim[J]. Fire Science and Technology, 2020, 39(7): 923.

    [16] Lin C J, Chuah Y K. A study on long tunnel smoke extraction strategies by numerical simulation[J]. Tunneling and Underground Space Technology Incorporating Trenchless Technology Research, 2008, 23(5): 522-530.
    [17] 傅培舫,周怀春.巷道火灾过程中燃烧速率和释热速率的预测[J]. 燃烧科学与技术,2006,12(5):408.

    FU Peifang, ZHOU Huaichun. Prediction of burning rate and released heat rate during tunnel fire[J]. Journal of Combustion Science and Technology, 2006, 12(5): 408.

    [18] 张庆华,姚亚虎,赵吉玉.我国矿井通风技术现状及智能化发展展望[J].煤炭科学技术,2020,48(2):97-103.

    ZHANG Qinghua, YAO Yahu, ZHAO Jiyu. Status of mine ventilation technology in China and prospects for intelligent development[J]. Coal Science and Technology, 2020, 48(2): 97-103.

    [19] 赵文忠,罗宇,戎贤.基于FDS的高速公路隧道火灾人员疏散研究[J].消防科学与技术,2020,39(12):1683-1687.

    ZHAO Wenzhong, LUO Yu, Rongxian. Study on evacuation from highway tunnel fire based on FDS[J]. Fire Science and Technology, 2020, 39(12): 1683-1687.

  • 期刊类型引用(10)

    1. 刘延欣,武宇亮,康方,朱术云. 薄基岩区采动厚松散层底部土体渗透破坏特征研究. 煤矿安全. 2025(02): 203-211 . 本站查看
    2. 张寒寒,任建慧. 高强度回采的首采面一次见方期矿压规律研究. 能源与环保. 2024(04): 260-266 . 百度学术
    3. 王文卫,芦晓伟,丁坤朋,王文. 厚松散层薄基岩下分层开采覆岩破坏高度研究. 煤炭工程. 2024(05): 75-83 . 百度学术
    4. 武宇亮,闫增会,谢春雷,朱术云. 薄基岩区特厚煤层不同开采工艺下防砂安全煤岩柱留设研究. 煤炭技术. 2024(12): 44-48 . 百度学术
    5. 赵平平,张立明. 宽煤柱非连续卸压诱发冲击地压机制研究. 煤炭工程. 2024(12): 103-107 . 百度学术
    6. 刘延欣,武宇亮,朱术云. 厚松散层薄基岩不同开采方式下垮落带高度探究. 煤炭技术. 2023(09): 86-90 . 百度学术
    7. 阚雪冬. 载荷作用下“两带”发育高度规律研究. 煤炭与化工. 2023(08): 67-70 . 百度学术
    8. 侯俊华,孟凡贞,王宏,冯鲁顺,孟令飞. 基于抽水试验的北公村2号大型断层阻渗性研究. 矿业安全与环保. 2021(04): 68-74 . 百度学术
    9. 张军. 矿井瞬变电磁法在顶板富水评价中的应用研究. 煤炭技术. 2020(04): 149-152 . 百度学术
    10. 武宇亮,闫增会,吴玉石,王开胜,朱术云. 基于实测基础上的断层展布对提高开采上限影响探究. 能源技术与管理. 2020(05): 7-10 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  82
  • HTML全文浏览量:  0
  • PDF下载量:  31
  • 被引次数: 13
出版历程
  • 发布日期:  2021-12-19

目录

    /

    返回文章
    返回