大柳塔煤矿地表沉陷移动变形规律研究
Study on law of surface subsidence movement and deformation in Daliuta Coal Mine
-
摘要: 以大柳塔矿为工程背景,综合运用数值模拟方法、现场资料数据分析,对大柳塔矿地表移动沉陷进行了规律研究。结果表明:由于工作面推进速度的提高,使得煤层上覆岩层的各个层次下沉的速度均得到不同程度的加快,从而使得上覆岩层的相对悬空时间减少,所以导致了地表移动变形的集中;通过对工作面地表现场的实际测量和分析得出了地表下沉的最大速度是430 mm/d,因为地表下沉的速度大,所以从开始下沉到达到下沉的最大值所用时间较短,并且下沉量大,走向观测线上的点Z10的最大下沉量为3.959 m,并且由于下沉地区中心位置的下沉量较大,而且采区四周的下沉量在较小的范围内快速降低,下沉地区的边界十分收敛,从而导致了下沉地区的边缘非常陡峭;地表从开始下沉到接近最大下沉量所用不到6个月的时间,而且稳定时间较长,最后下沉100 mm接近10个月的时间才能达到稳定。Abstract: Taking Daliuta Mine as the engineering background, the law of surface movement and subsidence observation in Daliuta Mine was studied by using numerical simulation method and field data analysis. The numerical simulation analysis shows that the rapid advance of the working face makes the subsidence speed of each layer of the overlying strata of the coal seam faster, the relative suspension time is reduced, and the movement deformation is concentrated. The measured analysis shows that the time from the surface subsidence to the maximum subsidence of 430 mm/d is short, and the subsidence is large. The maximum subsidence at point Z10 on the observation line is 3.959 m. The subsidence at the bottom of the subsidence basin is large, and the subsidence near the boundary of the mining area decreases rapidly. The subsidence basin is extremely steep, and the convergence of the subsidence basin boundary is fast. The time from the surface movement to the maximum subsidence is less than six months, and the stability time is long. Finally, the time from the subsidence of 100 mm to 10 months achieve stability.
-
-
[1] 戴华阳.岩层与地表移动变形量的时空关系及描述方法[J].煤炭学报,2018,43(S2):450-459. DAI Huayang. Mining subsidence variables and their time-space relationship description[J]. Journal of China Coal Society, 2018, 43(S2): 450-459.
[2] 申涛,朱占荣.陕北矿区煤炭开采沉陷实测参数分析[J].煤炭科学技术,2019,47(12):207-213. SHEN Tao, ZHU Zhanrong. Analysis of measured mining subsidence parameters in Northern Shaanxi Mining Area[J]. Coal Science and Technology, 2019, 47(12): 207-213.
[3] 李春意,马爱阳,丁来中,等.厚黄土层下采动地表沉陷规律研究[J].金属矿山,2019,48(10):14-22. LI Chunyi, MA Aiyang, DING Laizhong, et al. Study on the mining subsidence evolution regularity under thick loess condition[J]. Metal Mine, 2019, 48(10): 14-22.
[4] 黄飞,黄滚,杨涛,等.龙滩矿井采煤工作面诱发开采沉陷的动态变化特征[J].矿业安全与环保,2019,46(2):103-106. HUANG Fei, HUANG Gun, YANG Tao, et al. Characteristics of dynamic variation of surface subsidence by mining face in Longtan Mine[J]. Mining Safety & Environmental Protection, 2019, 46(2): 103-106.
[5] 唐君,王金安,王磊.薄冲积层下开采地表动态移动规律与特征[J].岩土力学,2014,35(10):2958-2968. TANG Jun, WANG Jin’an, WANG Lei. Dynamic laws and characteristics of surface movement induced by mining under thin alluvium[J]. Rock and Soil Mechanics, 2014, 35(10): 2958-2968.
[6] 白光宇,张德强,张进德,等.山区开采沉陷地表移动变形规律[J].辽宁工程技术大学学报(自然科学版),2017,36(7):684-688. BAI Guangyu, ZHANG Deqiang, ZHANG Jinde, et al. Law of surface movement and deformation of mining subsidence in mountain area[J]. Journal of Liaoning Technical University(Natural Science), 2017, 36(7): 684-688.
[7] 杨帆,余海锋,郭俊廷.采动地表裂缝形成机理的数值模拟[J].辽宁工程技术大学学报(自然科学版),2016, 35(6):566-570. YANG Fan, YU Haifeng, GUO Junting. Mechanism of mining-induced surface crack by numerical simulation method[J]. Journal of Liaoning Technical University (Natural Science), 2016, 35(6): 566-570.
[8] 孙庆先.浅埋煤层综采(综放)条件下地表移动变形特征分析[J].煤炭工程,2019,51(3):97-102. SUN Qingxian. Study on characteristics of shallow coal seam surface subsidence under fully-mechanized mining (top-coal caving)[J]. Coal Engineering, 2019, 51(3):97-102.
[9] 王金庄,常占强,陈勇.厚松散层条件下开采程度及地表下沉模式的研究[J].煤炭学报,2003,28(3):230. WANG Jinzhuang, CHANG Zhanqiang, CHEN Yong. Study on mining degree and patterns of ground subsidence in condition of mining under thick unconsolidated layers[J]. Journal of China Coal Society, 2003, 28(3): 230-234.
[10] 郭文兵,赵高博,白二虎.煤矿高强度长壁开采覆岩破坏充分采动及其判据[J].煤炭学报,2020,45(11):3657-3666. GUO Wenbing, ZHAO Gaobo, BAI Erhu. Critical failure of overlying rock strata and its criteria induced by high-intensity longwall mining[J]. Journal of China Coal Society, 2020, 45(11): 3657-3666.
[11] 朱庆伟,蒋军,张润安,等.大采高浅埋深煤层覆岩破坏规律数值模拟[J].煤炭工程,2013,45(11):75. ZHU Qingwei, JIANG Jun, ZHANG Runan, et al. Numerical simulation on overburden strata failure law of high cutting coal mining face in shallow depth seam of mine[J]. Coal Engineering, 2013, 45(11): 75.
[12] 昝军才,陈跟马,林建成,等.高地压巷道动力显现区域围岩稳定性的钻孔窥视分析及对策[J].中国矿业,2020,29(8):91-97. ZAN Juncai, CHEN Genma, LIN Jiancheng, et al. Analysis and countermeasures of the peepholes for surrounding rock stability in high earth pressure roadway[J]. China Mining, 2020, 29(8): 91-97.
-
期刊类型引用(2)
1. 许杰,樊春宇,朱油雷. 煤岩组合体的力学特征和损伤特性与能量演化研究进展. 陕西煤炭. 2024(12): 83-89 . 百度学术
2. 王钰,石杰,巩金. 岩煤岩组合体强度特征的离散元研究. 山东煤炭科技. 2023(10): 100-103 . 百度学术
其他类型引用(7)
计量
- 文章访问数: 81
- HTML全文浏览量: 0
- PDF下载量: 16
- 被引次数: 9