边缘计算驱动的瓦斯灾害智能感知方法研究
Research on intelligent sensing method of gas disaster driven by edge computing
-
摘要: 针对回采面瓦斯单点监测模式存在较多监测盲区及无法展现瓦斯流场分布状态的问题,基于边缘计算技术提出了构建回采面瓦斯体积分数场并视觉显示瓦斯流场以及监测预警瓦斯涌出异常的方法,该方法革新了瓦斯传统监测模式,用面域监测取代单点监测,边缘计算网关替代通用监控分站,实现回采面瓦斯的全覆盖监测及井下就地构建数据场、云图展示和异常起伏捕捉,具体思路如下:通过现场实测数据获得回采面瓦斯“台阶上升”和“渐变上升”的分布特征,据此设计了瓦斯全覆盖的监测方案,借助新型MEMS瓦斯传感器完成瓦斯的全覆盖监测布置系统;监测数据通过无线或有线方式传输至边缘计算网关;边缘计算网关安设在回采巷道内,内嵌数据处理模型、单点瓦斯体积分数异常波动判别模型,数据处理模型构建瓦斯数字场、形成瓦斯动态云图,单点瓦斯体积分数异常判别模型对单点瓦斯体积分数异常起伏进行判断,分区判定模式完成回采面瓦斯异常起伏行为捕捉;最终实现瓦斯体积分数场云图的宏观展示和异常起伏的微观捕捉。Abstract: Aiming at the problems of more blind monitoring areas and unable to show the distribution of gas flow field in single point monitoring mode of gas in mining face, based on edge computing technology, a method of constructing gas concentration field in mining face, visual display of gas flow field and monitoring and early warning of abnormal gas emission is proposed. The platform revolutionized the traditional methane monitoring model, replaced single-point monitoring with area monitoring, replaced methane substations with edge computing gateways, and realized global monitoring of methane in coal mining faces, built methane data fields underground, displayed methane cloud diagrams, and captured methane emission abnormally. The specific ideas are as follows: the distribution characteristics of “step rise” and “gradual rise” of methane in mining face are obtained by field measured data. Based on this, a full coverage monitoring scheme of methane is designed, and the full coverage monitoring layout system of methane is completed by using a new MEMS methane sensor; the monitoring data are transmitted to the edge computing gateway by wireless or wired means; edge computing gateway is located in mining roadway, embedded data processing model, single point methane concentration abnormal jump recognition model and periodic abnormal fluctuation discrimination model. The data processing model to build methane digital field, methane dynamic cloud diagrams, the jump model of single point methane concentration anomaly are used to judge the fluctuation of single point methane concentration anomaly, the discrimination by region mode to complete the mining face methane abnormal fluctuation behavior capture. Finally, the macroscopic display of methane concentration field cloud diagram and microscopic capture of abnormal fluctuation of methane concentration are realized.
-
-
[1] 李润求,施式亮,念其锋,等.近10年我国煤矿瓦斯灾害事故规律研究[J].中国安全科学学报,2011,21(9):143. LI Runqiu, SHI Shiliang, NIAN Qifeng, et al. Research on coalmine gas accident rules in China in recent decade[J]. Chinese Safety Science Journal, 2011, 21(9): 143.
[2] 王春光.低含量超强开采工作面瓦斯异常涌出防治技术[J].中国安全科学学报,2017,27(1):71. WANG Chunguang. Study on technique for controlling gas abnormal effusing of working face for coal seam poor in gas under extremely intensive mining condition[J]. Chinese Safety Science Journal, 2017, 27(1): 71.
[3] 郝光生,袁德权,陈宾,等.东大煤矿投产初期瓦斯涌出来源及防治技术研究[J].煤炭科学技术,2016,44(S1):75-77. HAO Guangsheng, YUAN Dequan, CHEN Bin, et al. Study on source of gas emission and control technology for initial stage of production in Dongda Coal Mine[J]. Coal Science and Technology, 2016, 44(S1): 75-77.
[4] 王兆丰,郭林聪,苏伟伟,等.基于瓦斯日报表的回采面瓦斯涌出来源定量分析[J].河南理工大学学报(自然科学版),2015,34(3):311-315. WANG Zhaofeng, GUO Lincong, SU Weiwei, et al. A quantitative analysis method of gas emission based on gas daily report in working face[J]. Journal of Henan Polytechnic University(Natural Science), 2015, 34(3): 311-315.
[5] 窦林名,王盛川,巩思园,等.冲击矿压风险智能判识与多参量监测预警云平台[J].煤炭学报2020,48(6):2248-2255. DOU Linming, WANG Shengchuan, GONG Siyuan, et al. Cloud platform of rock-burst intelligent risk assessment and multi-parameter monitoring and early warning[J]. Journal of China Coal Society, 2020, 48(6): 2248.
[6] 屈世甲,武福生.基于边缘计算的采煤工作面甲烷监测模式研究[J].煤炭科学技术,2020,48(12):161. QU Shijia, WU Fusheng. Research on methane monitoring mode of coal mining face based on edge computing[J]. Coal Science and Technology, 2020, 48(12): 161-167.
[7] 汪丛笑.煤矿安全监控系统升级改造及关键技术研究[J].工矿自动化,2017,43(2):1-6. WANG Congxiao. Research on upgrading of coal mine safety monitoring and control system and its key technologies[J]. Industry and Mine Automation, 2017, 43(2): 1-6.
[8] 刘正杰.MEMS甲烷传感器特性表征系统的设计与实现[D].徐州:中国矿业大学,2020. LIU Zhengjie. Design and implementation of MEMS methane sensor characterization system[D]. Xuzhou: China University of Mining and Technology, 2020.
[9] 王丽影,秦顺利,马洪宇.矿用MEMS甲烷传感器硅微加热器功率优化设计[J].工矿自动化,2018,44(10):19-23. WANG Liying, QIN Shunli, MA Hongyu. Power optimization design of silicon microheater of mine-used MEMS methane sensor[J]. Industry and Mine Automation, 2018, 44(10): 19-23.
[10] 李雄伟,廉志华,张婧.煤矿安全监控系统的发展简述[J].陕西煤炭,2020,39(2):47-50. LI Xiongwei, LIAN Zhihua, ZHANG Jing. Research on the development of coal mine safety monitoring system[J]. Shaanxi Coal, 2020, 39(2): 47-50.
[11] 梁丹.RPL协议在煤矿安全生产监测中的应用研究[D].西安:西安科技大学,2019. LIANG Dan. Application research of RPL protocol in coal mine safety production monitoring[D]. Xi’an: Xi’an University of Science and Technology, 2019.
[12] 王其轩,陈北辰.基于CAN总线的煤矿安全监控系统设计[J].煤炭工程,2019,51(3):28-32. WANG Qixuan, CHEN Beichen. Design of monitoring and control system of coal mine safety based on CAN field bus[J]. Coal Engineering, 2019, 51(3): 28-32.
[13] 周海坤.瓦斯风电闭锁在矿用分站中的设计与实现[J].煤矿安全,2008,39(2):19-21. [14] 孙继平.煤矿监控新技术与新装备[J].工矿自动化,2015,41(1):1-5. SUN Jiping. New technologies and new equipments of coal mine monitoring[J]. Industry and Mine Automation, 2015, 41(1): 1-5.
[15] Ryan Lamothe. Edge Computing[R]. Richland, WA:Pacific Northwest National Laboratory, 2013. [16] Shi Weisong, Cao jie, Zhang quan, et al. Edge Computing: Vision and challenges[J]. IEEE Internet of Things Journal, 2016, 3(5): 637-646. [17] 施巍松,张星洲,王一帆,等.边缘计算:现状与展望[J].计算机研究与发展,2019,56(1):69-89. SHI Songwei, ZHANG Xingzhou, WANG Yifan, et al. Edge computing: state-of-the-art and future directions[J]. Journal of Computer Research and Development, 2019, 56(1): 69-89.
[18] 施巍松,孙辉,曹杰,等. 边缘计算:万物互联时代新型计算模型[J].计算机研究与发展,2017,54(5):907-924. SHI Songwei, SUN Hui, CAO Jie, et al. Edge computing—an emerging computing model for the internet of everything era[J]. Journal of Computer Research and Development, 2017, 54(5): 907-924.
计量
- 文章访问数: 43
- HTML全文浏览量: 5
- PDF下载量: 13