小纪汗煤样在塑性流动下力学性质试验研究
Experimental study on mechanical properties of Xiaojihan coal samples under plastic flow
-
摘要: 为了研究小纪汗主含水煤层在采动影响下塑性流动性质和滞回特性,进行了不同围压下的轴向循环加卸载试验;当峰后轴向应力降到峰值应力的70%时开始循环加卸载轴向压缩试压,分析滞环的割线模量、宽长比及相邻滞环的轴向峰值应力比的变化规律。结果表明:随着围压的增大,轴向应变-轴向应力滞回曲线、径向应变-轴向应力滞回曲线的割线模量和宽长比增大,相邻滞环的轴向峰值应力比减小;随着循环次数的增大,轴向应变-轴向应力滞回曲线、径向应变-轴向应力滞回曲线的割线模量和宽长比减小;对于近似相同初始应力状态,围压对滞回曲线的几何特征量和塑性流动具有显著影响。
-
关键词:
- 小纪汗煤层 /
- 塑性流动 /
- 围压 /
- 剪切屈服后的循环加卸载 /
- 应力-应变滞环
Abstract: In order to study the plastic flow properties and hysteresis characteristics of Xiaojihan main water-bearing coal seam under the influence of mining, the axial cyclic loading and unloading tests under different confining pressures were carried out. When the axial stress after the peak drops to 70% of the peak stress, the cyclic loading and unloading axial compression test is started, and the secant modulus, width-length ratio of the hysteresis ring and the change law of the axial peak stress ratio of the adjacent hysteresis ring are analyzed. The results show that: with the increase of confining pressure, the secant modulus and width-length ratio of the axial strain-axial stress hysteresis curves and the hoop strain-axial stress hysteresis curve increase, while the axial peak stress ratio of the adjacent hysteretic loops decreases; with the increase of the number of cycles, the secant modulus and the width-length ratio of the axial strain-axial stress hysteresis curves and the hoop strain-axial stress hysteresis curves decrease. For approximately the same initial stress state, the confining pressure has a significant effect on the geometric characteristics of the hysteresis curve and the plastic flow. -
-
[1] 张春会,徐晓攀,王锡朝,等.考虑围压影响的岩石弹脆塑力学模型[J].采矿与安全工程学报,2015,32(1):132-137. ZHANG Chunhui, XU Xiaopan, WANG Xizhao, et al. Elastic-brittle-plastic mechanical model for rock with confining pressure[J]. Journal of Mining and Safety Engineering, 2015, 32(1): 132-137.
[2] 史贵才,葛修润,卢允德.脆塑性岩石应力脆性跌落系数的试验研究[J].常州工学院学报,2009,22(1):1. SHI Guicai, GE Xiurun, LU Yunde. Research on coe- fficent of brittle stress drop of brittle plastic rocks[J]. Journal of Changzhou Institute of Technology, 2009, 22(1): 1-6.
[3] 朱珍德,张勇,徐卫亚,等.高围压高水压条件下大理岩断口微观机理分析与试验研究[J]. 岩石力学与工程学报,2005,24(1):44-51. ZHU Zhende, ZHANG Yong, XU Weiya, et al. Experimental studies and microcosmic mechanics analysis on marble rupture under high confining pressure and high hydraulic pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(1): 44-51.
[4] 冯友良.大断面煤巷开挖卸荷帮部破坏机制与控制技术研究[D].徐州:中国矿业大学,2017. [5] 荣传新,程桦.地下水渗流对巷道围岩稳定性影响的理论解[J].岩石力学与工程学报,2004,23(5):741. RONG Chuanxin, CHENG Hua. Stability analysis of rocks around tunnel with ground water permeation[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(5): 741.
[6] 郑颖人,沈珠江,龚晓南.广义塑性力学——岩土塑性力学原理[M].北京:建筑工业出版社,2002. [7] 陆银龙,王连国,杨峰,等.软弱岩石峰后应变软化力学特性研究[J].岩石力学与工程学报,2010,29(3):640-648. LU Yinlong, WANG Lianguo, YANG Feng, et al. Post-peak strain softening mechanical properties of weak rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 640-648.
[8] 朱雪松,刘树新,杨振增.岩石峰后应变软化力学特性研究[J].内蒙古煤炭经济,2015(1):149. [9] 丁祥.致密油藏岩石粘塑性力学特征及其在网络压裂中的应用[D].北京:中国石油大学(北京),2017. [10] 任明远.加卸荷应力路径下大理岩变形破坏过程声发射特征与本构模型研究[D].青岛:青岛理工大学,2015. [11] 孙达.循环荷载作用下煤样疲劳特性的试验研究[J].山东煤炭科技,2019(2):206-208. SUN Da. Experimental investigation on fatigue properties of coal under cyclic loading[J]. Shandong Coal Science and Technology, 2019(2): 206-208.
[12] Tutuncu A N, Podio A L, Sharma M M. Nonlinear visco-elastic behavior of sedimentary rocks,part I: effect of frequency and strain amplitude[J]. Geophysics, 1998, 63(1): 184-190. [13] Tutuncu A N, Podio A L, Sharma M M. Nonlinear viscoelastic behavior of sedimentary rocks, part II: hysteresis effect and influence of type of fluid on elastic moduli[J]. Geophysics, 1998, 63(1): 195. [14] 周家文,杨兴国,符文熹,等.脆性岩石单轴循环加卸载试验及断裂损伤力学特性研究[J].岩石力学与工程学报,2010,29(6):1172-1183. ZHOU Jiawen, YANG Xingguo, FU Wenxi, et al. Experimental test and fracture damage mechanical characteristics of brittle rock under uniaxial cyclic loading and unloading conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6): 1172-1183.
[15] 李小春,白冰,唐礼忠,等.较低和较高围压下煤岩三轴试验及其塑性特征新表述[J].岩土力学,2010,31(3):677-682. LI Xiaochun, BAI Bing, TANG Lizhong, et al. Triaxial tests of coal under low and high confining pressures and its plastic characteristics description[J]. Rock and Soil Mechanics, 2010, 31(3): 677-682.
[16] 郭印同,杨春和.硬石膏常规三轴压缩下强度和变形特性的试验研究[J].岩土力学,2010,31(6):1776. GUO Yintong, YANG Chunhe. Experimental investigation on strength and deformation properties of anhydrite under conventional triaxial compression[J]. Rock and Soil Mechanics, 2010, 31(6): 1776.
[17] 孟召平,彭苏萍,凌标灿.不同侧压下沉积岩石变形与强度特征[J].煤炭学报,2000,25(1):15-18. MENG Zhaoping, PENG Suping, LING Biaocan. Characters of the deformation and strength under differentconfining pressures on sedimentary rock[J]. Journal of China Coal Society, 2000, 25(1): 15-18.
[18] 苏承东,翟新献,李永明,等.煤样三轴压缩下变形和强度分析[J].岩石力学与工程学报,2006,25(2):2963-2968. SU Chengdong, ZHAI Xinxian, LI Yongming, et al. Study on deformation and strength of coal samples in triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(2): 2963-2968.
[19] Yang S Q, Jiang Y Z, Xu W Y, et al. Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression[J]. International Journal of Solids and Structures, 2008, 45: 4796-4819. [20] Guo J, Liu J, Li Q, et al. Study on the permeability evolution and its formation mechanism of xiaojihan aquifer coal seam under plastic flow[J]. Geofluids, 2020(3): 1-16. [21] 王康.小纪汗煤矿顶板上覆岩层移动规律研究[D].徐州:中国矿业大学,2015. [22] 郭静那.塑性流动下煤样渗透率演化试验研究[D].徐州:中国矿业大学,2015. -
期刊类型引用(2)
1. 许杰,樊春宇,朱油雷. 煤岩组合体的力学特征和损伤特性与能量演化研究进展. 陕西煤炭. 2024(12): 83-89 . 百度学术
2. 王钰,石杰,巩金. 岩煤岩组合体强度特征的离散元研究. 山东煤炭科技. 2023(10): 100-103 . 百度学术
其他类型引用(7)
计量
- 文章访问数: 40
- HTML全文浏览量: 0
- PDF下载量: 26
- 被引次数: 9