运输巷火灾烟流引流系统设计
Design of fire smoke drainage system in transportation roadway
-
摘要: 为保证火灾时有毒有害气体能被有效引流至回风巷,通过采用数值模拟的方法,运用Pyrosim模拟软件建立运输巷实际尺寸模型,对发生火灾时巷道内有毒有害气体蔓延情况进行模拟分析。结果表明:CO在向下风侧扩散时,多在高度 3.1~3.3 m处首先检测到CO;基于这一特点,将引流系统中控制传感器置于运输巷高约3.3 m处,拱顶下方15 cm检测效果最佳。引流系统设计了传感器控制核心策略,采用了回风引巷中安装PLC 控制装置,利用双CO、双烟雾传感器实现控制铝合金制卷帘风窗进行风流自动调控;为保证火灾烟流完全被引流,设置了双向风速传感器辅助控制,并通过风窗远程监控系统,实现了井上工作人员进行实时监测和控制。通过现场应用,达到了良好的引流效果。Abstract: In order to ensure the toxic or harmful gases can be effective drainage to return air lane, this paper adopts the method of numerical simulation and uses Pyrosim simulation software to establish the actual size model of the transportation roadway, and to simulate and analyze the spread of toxic and harmful gases in the roadway when a fire occurred. The results show that when CO diffused to the leeward side, it was first detected at the height of 3.1-3.3 m. Based on this characteristic, the control sensor in the drainage system was placed at the height of the transportation lane about 3.3 m, and the detection effect was the best when the sensor was 15 cm below the vault. The core strategy of sensor control is designed for the drainage system. The PLC control device is installed in the return air diversion lane. The double CO and double smoke sensors are used to control the aluminum alloy rolling shutter air window for air flow automatic regulation. In order to ensure that the fire smoke flow is completely drained, a two-way wind speed sensor is set to assist the control, and the remote monitoring system through the wind window is used to realize the real-time monitoring and control of the workers on the shaft. Through field application, a good drainage effect has been achieved.
-
Keywords:
- mine fire /
- fire smoke drainage system /
- CO distribution /
- PLC /
- numerical simulation
-
-
[1] 蒋茂荣,肖新建.2019年煤炭供需形势分析及2020年展望[J].中国能源,2020,42(3):9-13. [2] 朱红青,胡超,张永斌,等.我国内因火灾防治技术研究现状[J].煤矿安全,2020,51(3):88-92. ZHU Hongqing, HU Chao, ZHANG Yongbin, et al. Research status on prevention and control technology of coal spontaneous fire in China[J]. Safety in Coal Mines, 2020, 51(3): 88-92.
[3] 郑学召,回硕,文虎,等.矿井火灾孕灾机制及防控技术研究进展[J].煤矿安全,2017,48(10):148-151. ZHENG Xuechao, HUI Shuo, WEN Hu, et al. Research progress on preventing and controlling technology and disaster-forming mechanism of mine fire[J]. Safety in Coal Mines, 2017, 48(10): 148-151.
[4] 陈晨,齐庆杰.矿井火灾防治技术的发展现状及趋势[J].煤炭技术,2009,28(3):3-5. [5] 周福宝,王德明.矿井火灾烟流滚退距离的数值模拟[J].中国矿业大学学报,2004,33(5):499-502. [6] 黄刚.煤矿井下皮带火灾烟气流动及分布规律研究[D].北京:华北科技学院,2018. [7] 张国枢,王省身.火风压的计算及其影响因素分析[J].中国矿业学院学报,1983(3):69-82. [8] 蒋军成,王省身.火灾巷道烟气流动的数值分析[J].煤炭学报,1997(2):55-60. [9] 鲁亚丽.矿井倾斜巷道火灾烟气运动规律及危害控制研究[D].武汉:武汉科技大学,2016. [10] 王伟,李红阳,王长彬.基于Fluent模拟的掘进工作面风流温度预测[J].煤矿安全,2010(6):4-5. [11] 贾静,郭立稳,朱令起,等.矿井巷道火灾烟流逆退数值模拟及临界风速研究[J].中国安全生产科学技术,2020,16(4):94-100. JIA Jing, GUO Liwen, ZHU Lingqi, et al. Study on numerical simulation of smoke back flow and critical wind speed in mine roadway fire[J]. Journal of Safety Science and Technology, 2020, 16(4): 94-100.
[12] 祁云,齐庆杰,汪伟,等.胶带运输巷水幕抑制火灾烟气效率影响因素实验研究[J].中国安全生产科学技术,2019,15(5):123-129. QI Yun, QI Qingjie, WANG Wei, et al. Experimental study on influencing factors of fire smoke suppression efficiency by water curtain in belt transportation roadway[J]. Journal of Safety Science and Technology, 2019, 15(5): 123-129.
[13] 邱雁,周心权.水平巷道火灾浮羽流及顶板射流积分模型[J].辽宁工程技术大学学报,2003(5):585. [14] 季经纬,程远平.矿井火灾中火场能见度的估算方法[J].中国矿业大学学报,2006(2):149-152. [15] 范韫,胡连桃,邓建.矿井运输胶带热解动力特性的实验研究[J].中国矿业大学学报,1998(3):73-75. [16] 齐庆杰,王欢,董子文,等.矿井胶带运输巷火灾蔓延规律的数值模拟研究[J].中国安全科学学报,2016, 26(10):36-41. QI Qingjie, WANG Huan, DONG Ziwen, et al. Numerical simulation of belt conveyor fire spreading law in coal mine[J]. China Safety Science Journal, 2016, 26(10): 36-41.
[17] 沈云鸽,王德明.基于 FDS 的矿井巷道火灾烟气致灾数值模拟[J].煤矿安全,2020,51(2):183. SHEN Yunge, WANG Deming. Numerical simulation of smoke disaster caused by mine roadway fire based on FDS[J]. Safety in Coal Mines, 2020, 51(2): 183.
[18] 潘竞涛.矿井火灾时期风流自动控制研究[J].煤炭技术,2018,37(7):155-158. PAN Jingtao. Study on automatic airflow control of mine fire[J]. Coal Technology, 2018, 37(7): 155-158.
[19] 李翠平,曹志国,钟媛.矿井火灾的场量模型构建及其可视化仿真[J].煤炭学报,2015,40(4):902-908. LI Cuiping, CAO Zhiguo, ZHONG Yuan. Field variables modeling and visualization simulation of fire disaster in underground mine[J]. Journal of China Coal Society, 2015, 40(4): 902-908.
[20] 曹雅婷,王佰顺.基于数值模拟的矿井工作面进风巷火灾控制技术研究[J].煤炭技术,2015,34(4):204. CAO Yating, WANG Baishun. Mine working face intake airway fire control based on numerical simulation[J].Coal Technology, 2015, 34(4): 204.
-
期刊类型引用(8)
1. 杨英兵,王青祥,宋小林,何铖茂,徐冉,唐明云,王光雄,贺兵兵,陈明浩. 神东矿区浅埋煤层开采地表裂隙分布及动态演化特征研究. 煤矿安全. 2024(06): 66-75 . 本站查看
2. 高利军,冯斌,晋发东. 大倾角煤层协调开采地表移动变形控制. 煤矿安全. 2024(09): 157-165 . 本站查看
3. 王现国,王晨旭,苏阳艳,张晓丽. 地下工程勘察与围岩稳定性分析评价研究综述. 人民黄河. 2023(03): 131-136 . 百度学术
4. 苏保山. 浅埋煤层地质构造带动压巷道支护技术. 山东煤炭科技. 2023(02): 3-6 . 百度学术
5. 吕晓明,王政. 特厚煤层分层开采采空区下分层大断面开切眼支护技术研究. 中国煤炭. 2022(S1): 258-265 . 百度学术
6. 王昱博,肖支飞,王安民,郑勇,仝跃. 基于CDEM方法的小间距巷道中间岩柱稳定性分析. 地下空间与工程学报. 2022(S2): 785-791 . 百度学术
7. 丁万奇,马振乾,祖自银,谢红飞,杨威,陈川. 基于分形维数的巷道围岩裂隙演化规律研究. 煤田地质与勘探. 2021(03): 167-174 . 百度学术
8. 魏建坤. 采空区下底板岩层变形破坏机理与巷道围岩控制技术. 山东煤炭科技. 2021(08): 46-48 . 百度学术
其他类型引用(6)
计量
- 文章访问数: 22
- HTML全文浏览量: 0
- PDF下载量: 11
- 被引次数: 14